The Hückel p molecular orbitals of 1,3-butadiene

 

What do the orbitals look like?

(Atkins pg. 436)

 

·       Draw the orbitals using the coefficients c1, c2, c3 and c4 for each molecular orbital in turn.

 

·       Both the sign and the size of the coefficient for each atomic (2p) orbital are important

 

·       Diagrams here drawn to emphasize nodes (sign changes), size isn’t important for this

 

y1 -- lowest energy p M.O. (E = a + 1.62b)

       -- no nodes other than in molecular plane: 

 

y1 = 0.37f1 + 0.6f2 + 0.6f3 + 0.37f4

_______________________________________________

 

y2 -- second lowest energy p MO  (E = a + 0.62b)

       -- one node other than in molecular plane: 

 

y2 = 0.6f1 + 0.37f2 – 0.37f3 – 0.6f4

 

_______________________________________________

 

 

y3 -- first unoccupied antibonding p MO (E = a – 0.62b)

       -- two nodes other than in molecular plane:

 

y3 = 0.6f1 – 0.37f2 – 0.37f3 + 0.6f4

 

_______________________________________________

 

 

y4 -- highest antibonding p MO  (E = a – 1.62b)

       -- 3 nodes other than in molecular plane:

y4 = 0.37f1 – 0.6f2 + 0.6f3 + 0.37f4

 

Or, when size matters:

 

 

 

General conclusions about MOs