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Abstract We have performed atomistic computer simu-
lations on trace element incorporation into the divalent
dodecahedral X-sites of pyrope (Py — Mg3Al2Si3O12) –
grossular (Gr — Ca3Al2Si3O12) solid solutions. An ionic
model and the Mott–Littleton two-region approach to
defect energies were used to calculate the energetics of
substitution by a range of divalent trace-elements and of
charge-balanced substitution by trivalent ions in the
static limit. Results are compared with experimental
high-temperature, high-pressure garnet-melt trace ele-
ment partitioning data obtained for the same garnet
solid solution to refine our understanding of the factors
controlling element partitioning into solid solutions.
Defect energies (Udef,f), relaxation (lattice strain) ener-
gies (Urel), and solution energies (Usol) were derived
using two different approaches. One approach assumes
the presence of one type of hybrid X-site with properties
intermediate between pure Mg and Ca sites, and the
other assumes discrete Mg and Ca X-sites, and thus two
distinct cation sublattices. The hybrid model is shown to
be inadequate, since it averages out local distortions in
the garnet structure. The discrete model results suggest

trace elements are more soluble in Py50Gy50 than in ei-
ther end-member compound. Physically this is due to
small changes in size of the X-sites and the removal of
unfavourable interactions between third nearest neigh-
bours of the same size. Surprisingly, depending on the
local order, large trace element cations may substitute
for Mg2+ and small trace elements for Ca2+ in
Py50Gr50. These solubilities provide an explanation for
the anomalous trace-element partitioning behaviour
along the pyrope–grossular join observed experimen-
tally.

Keywords Element partitioning Æ Solid solutions Æ
Garnet Æ Atomistic simulation

Introduction

Trace-element concentrations in igneous rocks and their
constituent phases (minerals ± quenched melts) are
widely used to develop and test petrogenetic models (e.g.
Gast 1968; Shaw 1970; Shimizu 1975; Loubet and
Allègre 1982; McKenzie and O’Nions 1991; Frey et al.
1994; Putirka 1999). An essential prerequisite for using
trace elements in this fashion is the accurate knowledge
of the partitioning behaviour of trace elements between
minerals and co-existing melts. In recent years, our un-
derstanding of the principles governing the distribution
of trace elements between solid and liquid phases has
increased significantly. Rapid development of suitable
analytical techniques has led to a large increase in par-
titioning data, while the advent of empirical models of
mineral-melt partitioning (Beattie 1994; Blundy and
Wood 1994) provides a convenient framework for their
interpretation (e.g. Wood and Blundy 1997; Allan et al.
2001; Van Westrenen et al. 2001a).

Parallel to these advances, increases in computer
speed and development of new algorithms have facili-
tated atomistic computer simulation studies of the
incorporation of trace-elements in crystal structures.
These are providing independent insights into the ener-
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getics of trace-element incorporation into the lattices of
alumino-silicate minerals (e.g. Purton et al. 1996, 1997a,
2000; Van Westrenen et al. 2000a). Up to now, virtually
all computational studies have dealt exclusively with
trace elements entering pure end-member compositions
such as forsterite and diopside (Purton et al. 1996,
1997a) and the garnet end members pyrope (Py —
Mg3Al2Si3O12), grossular (Gr — Ca3Al2Si3O12),
almandine (Fe3Al2Si3O12) and spessartine (Mn3Al2-
Si3O12) (Van Westrenen et al. 2000a). However, most
natural samples are solid solutions, making an evalua-
tion of the effects of solid solution formation and dis-
order on trace-element energetics highly desirable.

In this paper we report atomistic simulations of trace-
element incorporation into the large dodecahedral X-site
of pyrope–grossular solid solutions. Garnet solid solu-
tions are stable over a wide range of pressures and
temperatures in the Earth. The thermodynamic proper-
ties of garnet solid solutions have been the subject of
numerous experimental studies (see, e.g. reviews by
Geiger 1999, 2001), and more recently in the simulation
studies of Bosenick et al. (2000, 2001) and Lavrentiev
et al. (pers. comm.). Non-ideal behaviour is ubiquitous,
particularly along the pyrope–grossular join for which
large positive excess enthalpies, entropies and volumes
of mixing have been reported (Geiger 1999). Interest-
ingly, non-linearities are also observed in garnet miner-
al-melt partitioning data, as discussed below, and so in
this paper we extend the previous simulation studies and
consider trace-element incorporation. We compare re-
sults from our simulations with experimental observa-
tions in order to refine our understanding of the factors
controlling element partitioning into garnets.

Recent partitioning models (Beattie 1994; Blundy and
Wood 1994) are based on the observation of Onuma et al.
(1968) that mineral-melt partition coefficients (Ds) for
series of isovalent trace-elements entering a specific
crystal lattice site show a near-parabolic dependence on
trace-element ionic radius. This is illustrated in Fig. 1a,
showing three sets of garnet-melt partition coefficients,
DGrt/Melt, as a function of trace-element radius r, for
trivalent trace elements entering the dodecahedral garnet
X-site (Van Westrenen et al. 1999). The X-site, predo-
minantly occupied by a mixture of Mg, Ca, Fe(II) and
Mn in nature, is the favoured site for the rare-earth
elements (REE), U and Th in garnet (e.g. Quartieri et al.
1999; Van Westrenen et al. 1999, 2000b). These trace
elements are among the most important and widely used
in petrogenetic models involving garnets (e.g. LaTour-
rette et al. 1993; Shen and Forsyth 1995; Hirschmann
and Stolper 1996; Bourdon et al. 1996; Blichert-Toft et al.
1999). The three datasets in Fig. 1a represent garnet-melt
partitioning experiments, performed at a constant pres-
sure of 3 GPa and a near-constant temperature of
1545 ± 15 oC, on different bulk compositions in the
simple system CaO–MgO–Al2O3–SiO2 (CMAS). The
experiments, aimed at isolating the influence of garnet Ca
and Mg contents on DGrt/Melt, produced garnets with
widely different compositions along the Py–Gr join.

Blundy and Wood (1994) rationalized near-parabolic
dependencies such as those shown in Fig. 1a using the
lattice strain model of Brice (1975). Brice (1975) related
the lattice strain energy, Ustrain, associated with the in-
sertion of a trace element with radius ri into a site with
radius r0, to the size misfit (ri ) r0) between substituent
and host cation. Per mole of trace element

Fig. 1 a Experimental variation of garnet-melt partition coefficients
(DGrt/Melt) entering the garnet X-site. DGrt/Melt (defined as the
concentration (in wt%) of an element in garnet divided by its
concentration in coexisting melt) are shown for trivalent trace
elements (REE, Y, In, Sc) in three high-pressure (3 GPa), high-
temperature (1545 ± 15� C) experiments along the Py–Gr join.
Curves are least-squares fits of Eq. (2) to data. Partitioning data for
divalent elements not shown for clarity. b Variation of fitted values of
r0(2+, 3+) (upper panel) and EX(2+, 3+) (lower panel) along the Py–
Gr join. Note anomalous EX(2+) and EX(3+) for intermediate
garnets. Partitioning data from Van Westrenen et al. (1999), ionic
radii from Shannon (1976). 1r error bars are smaller than symbol size
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where E is the Young’s modulus and NA Avogadro’s
constant. The larger the size misfit (ri – r0), or the higher
the value of E, the larger is the strain energy associated
with a substitution, and the lower is the affinity of the
host structure for a particular trace element. Blundy and
Wood (1994) assumed that, as crystals are far more rigid
than melts, the energy associated with the exchange re-
action between melt and crystal, and therefore the cor-
responding mineral-melt partition coefficient D can be
approximated by the strain energy Ustrain in the crystal.
Thus,

Dmineral=melt ¼ D0 exp �
Uexchange

RT

� �

ffi D0 exp �
Ustrain

RT

� �
; ð2Þ

where D0 is a constant for any given P, T and melt
composition. As can be seen from Eq. (2), the trace
element that produces the largest strain energy upon
incorporation in a mineral will have the lowest mineral-
melt partition coefficient.

The curves drawn in Fig. 1a are fits to the experi-
mental data obtained using Eqs. (1) and (2). Variations
in mineral-melt partition coefficients with mineral com-
position can be described conveniently using the fitted
parameters r0 and E. Figure 1b shows the variations in
r0 and the ‘‘apparent’’ or ‘‘effective’’ Young’s modulus E
with garnet composition (along the pyrope–grossular
join) for both trivalent and divalent elements. Values of
r0 show a systematic dependence on garnet composition,
increasing linearly with increasing grossular content.
This is entirely consistent with the crystallographically
observed differences between the <X–O> bond lengths
of pyrope (�2.27 Å; Armbruster et al. 1992) and gros-
sular (�2.41 Å; Ganguly et al. 1993). On the other hand,
the effective X-site modulus, EX, shows profound non-
linearity along the join, with EX for intermediate py-
rope-grossular garnets (Py60Gr40 in Fig. 1) lower than
EX for both pyrope- and grossular-rich garnets. This
anomaly is observed in the data of Van Westrenen et al.
(1999) for both trivalent and divalent elements (the latter
not shown in Fig. 1a). Non-linear behaviour between
Py- or Gr-rich and intermediate Py–Gr garnets is also
observed in partitioning data for several other trace el-
ements of key importance to petrogenetic models (e.g.
Zr, Hf, Ti; Van Westrenen et al. 2001b), as well as in
natural garnet–pyroxene partitioning data (e.g. Harte
and Kirkley 1997).

These non-linearities are likely associated with the
peculiarities of the garnet crystal structure. Figure 2
shows the structure of garnet as a set of interconnected
polyhedra showing the X-site dodecahedra, together
with the SiO4 tetrahedra and AlO6 octahedra. There is
extensive edge-sharing between these polyhedra forming
a three-dimensional network. Each tetrahedron shares

two opposite edges with dodecahedra, each
dodecahedron shares four edges with other dodecahedra
and every octahedron shares six edges with the
surrounding dodecahedra. All polyhedra in the garnet
structure are distorted from ‘‘ideal’’ geometry, and these
distortions are likely to influence the energetic and
structural behaviour of solid solutions. Accordingly, in
this paper in addition to presenting results for a
hybrid ‘‘mean-field’’ model in which all X-sites have the
same properties, intermediate between those of Mg and
Ca sites and dependent on bulk composition, we
also carry out simulations based on discrete Mg and
Ca sites, which do not average out local structural
distortions.

The structure of this paper is as follows. In the next
section we summarize the theoretical methods for per-
fect and defective lattices and discuss in detail the in-
teratomic potentials used in our simulations. Results for
the hybrid and discrete models are then presented in
turn. The two sets of results are then compared, the
importance of local ordering assessed and the implica-
tions for trace-element partitioning examined.

Methods and simulations of garnet structures

For all simulations a conventional Born ionic model was used,
assigning integral ionic charges, based on accepted chemical va-
lence rules, to all species (i.e. 2+ to Mg and Ca, 3+ to Al, 4+ to
Si, and 2- to O). Cation–oxygen interactions were described by a
consistent set of 2-body interionic Buckingham potentials, which
take the form:

uðrijÞ ¼ A exp � rij

q

� �
� C

r6ij
; ð3Þ

with A, q and C constants derived from simulations on binary
oxides, and rij the interionic distance. The oxide ion polariability
was taken into account using the shell model of Dick and Over-
hauser (1958), and a three-body O–Si–O bond bending term in-
corporated. Purton et al. (1996, 1997a) have shown the

Fig. 2 Two-dimensional projection of the garnet structure (after Merli
et al. 1995). Alternating isolated tetrahedra (black) and octahedra
(dark grey) form a three-dimensional corner-sharing network, with the
resulting cavities forming dodecahedra (light grey)
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applicability of these potentials for simulations of oxides (CaO and
MgO) and silicates (olivine, orthopyroxene, clinopyroxene). Po-
tentials for Si, Al and O, as well as Mg and Ca where these are
present as discrete species, were identical to those used in our
earlier study (Van Westrenen et al. 2000a).

All simulations were performed using the General Utility Lat-
tice Program (GULP) of Gale (1997). Static simulations of perfect
lattices (i.e. without any trace elements present) give the lattice
energy and crystal structure at zero pressure of the garnets. In the
static limit, the lattice structure is determined by the condition
@U=@xi ¼ 0 where U is the internal energy in the absence of lattice
vibrations, and the variables {Xi} (the lattice vectors and basis
atom coordinates) define the structure. No symmetry constraints
were applied.

Table 1 gives a comparison of observed and computed lattice
parameters for end members pyrope and grossular using these
potentials. Agreement between experiment and simulation is sat-
isfactory and in line with that obtained in other recent simulations
on pyrope–grossular garnets (Bosenick et al. 2000). From a
crystal-structural viewpoint, we note the change in sign of the
difference in O–O distances between unshared and shared octa-
hedral edges. Shared O–O edges are longer than unshared ones in
grossular, but shorter than unshared ones in pyrope, as observed
experimentally (Table 1). The data in Table 1 show that the po-
tential set gives a sufficiently accurate description of garnet
structures.

Hybrid model

In the hybrid model calculations, effective potentials for X-site
cation–oxygen interactions in garnets were constructed following
the method of Winkler et al. (1991), who use a mean-field ap-
proach. They derive effective, hybrid, potentials for sites occupied
by more than one atom from a combination of the interionic po-
tentials for the constituent species (in our case Mg and Ca). Under
the assumption that the first and second derivatives of the hybrid
interaction are equal to the weighted averages of the derivatives of
the Mg–O and Ca–O interactions for the observed X–O bond
length, Winkler et al. (1991) obtain:

qeff ¼
xMgq�1MgAMg expð�Rq�1MgÞ þ ð1� xMgÞq�1Ca ACa expð�Rq�1Ca Þ
xMgq�2MgAMg expð�Rq�1MgÞ þ ð1� xMgÞq�2Ca ACa expð�Rq�1CaÞ

ð4Þ

Aeff ¼
xMgq�1MgAMg expð�Rq�1MgÞ þ ð1� xMgÞq�1CaACa expð�Rq�1CaÞ

q�1eff expð�Rq�1eff Þ
:

ð5Þ
In these equations, xMg is the mole fraction ofMg ions on the X-site,
and for any intermediate garnet R is the equilibrium or mean X–O
bond length predicted from proportional addition of pyrope and
grossular X–O bond lengths (taken from Merli et al. 1995; see also
Smyth and Bish 1988). Calculated potential parameters for
xMg ¼ 0.25, 0.50 and 0.75 are given in Table 2. The analogous co-
efficient for the r)6 term in Eq. (3), Ceff, is zero for all compositions.

Discrete model

Simulations of solid solutions with discrete Mg and Ca sites were
carried out for compositions Py96Gr4, Py50Gr50 and Py4Gr96. Fol-
lowing 29Si MAS NMR studies (Bosenick et al. 1995, 1999) sug-
gesting limited short-range Ca–Mg ordering in intermediate Py–Gr
garnets, possible orderings along the join have been examined com-
putationally (Bosenick et al. 2000; Lavrentiev pers. comm.). A par-
ticularly interesting conclusion of these studies is that by far the
strongest repulsion of like cations (Ca–Ca, and Mg–Mg) is between
dodecahedral sites linked via an edge-shared tetrahedron, i.e.
unusually between third nearest cation neighbours. Figure 3 shows
part of the garnet structure, including the dodecahedral framework
and the SiO4 tetrahedra, and highlights this particular interaction. In
contrast, the nearest-neighbour and second-nearest-neighbour ca-
tion interactions are small. We have carried out a set of calculations
for Py50Gr50 with the potentials used in the present study and our
results regarding these interactions are in line with those of Bosenick
et al. (2000).

Table 1 Comparison between
observed and simulated lattice
parameters of end-member
garnets

Property Pyrope Grossular

Observeda Simulated Observedb Simulated (unit)

Unit-cell dimensions and oxygen atom coordinates
a 11.452 11.281 11.848 11.874 (Å)
b 11.452 11.281 11.848 11.874 (Å)
c 11.452 11.281 11.848 11.874 (Å)
x(O) 0.0329 0.0318 0.0382 0.0385 –
y(O) 0.0503 0.0519 0.0453 0.0458 –
z(O) 0.6533 0.6519 0.6514 0.6493 –
Dodecahedron (X-site)
X–O(1) 2.197 2.168 2.322 2.331 (Å)
X–O(2) 2.340 2.283 2.487 2.542 (Å)

<X–O> 2.269 2.225 2.405 2.437 (Å)

O4–O6 2.708 2.649 2.971 3.076 (Å)
O4–O7 2.778 2.721 2.859 2.923 (Å)

Octahedron (Y-site)
Al–O 1.886 1.846 1.926 1.894 (Å)
O1–O4 shared 2.617 2.541 2.758 2.747 (Å)
O1–O5 unshared 2.716 2.678 2.689 2.613 (Å)

Tetrahedron (Z-site)
Si–O 1.634 1.635 1.646 1.649 (Å)
O1–O2 2.497 2.505 2.572 2.580 (Å)
O1–O3 2.751 2.749 2.745 2.743 (Å)

Table 2 Calculated hybrid interatomic potentialsa; Ceff = 0 in all
cases

Garnet Aeff qeff

Py25Gr75 1088.70 0.3359
Py50Gr50 1119.95 0.3258
Py75Gr25 1210.67 0.3124

aAeff in eV, qeff in Å

a Lattice parameters for pyrope
from Armbruster et al. (1992)
b Lattice parameters for gros-
sular from Ganguly et al. (1993)
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As already mentioned, all polyhedra in the garnet structure are
distorted from ‘‘ideal’’ geometry. Bosenick et al. (2000) have em-
phasized that the three-dimensional polyhedral network constrains
the structure such that rigid-unit modes involving rigid rotations of
the polyhedra are not allowed. Any tetrahedral rotation must be
accompanied by a simultaneous distortion of the tetrahedra and
octahedra. A consequence of the absence of these rigid-unit modes
is that when an X-site cation is replaced in an end-member com-
pound, all polyhedra are distorted relative to their shape in the end
member, and the largest distortion takes place in the two tetrahedra
which share edges with the dodecahedron containing the new ca-
tion. Bosenick et al. (2000) have used such arguments to rationalize
the unfavourable third-neighbour interaction in the dilute limit.
This involves two X-sites in dodecahedra corner-shared to the same
tetrahedron. For two Ca cations in a pyrope host the tetrahedron is
compressed between the two dodecahedra and for two Mg cations
in grossular the tetrahedron is expanded. In more concentrated
solutions Mg–Mg and Ca–Ca third-nearest-neighbour cation pairs
remain energetically unfavourable.

For Py50Gr50, 15 different arrangements of Mg and Ca atoms
were examined (for a more detailed Monte Carlo study see Lav-
rentiev pers. comm.). The first of these (configuration 1) avoided all
energetically unfavourable Mg–Mg and Ca–Ca third-nearest-
neighbour pairs [i.e. Mg ions in fractional coordinates at (1/8, 0,
1/4), (5/8,

1/2,
3/4), (7/8,

1/2,
1/4) and (3/8,0,

3/4) with symmetry-related
atoms at (z,x,y) and (y,z,x)]. Of the remaining configurations three
were selected at random and the remainder selected to give a range
of first, second- and third-nearest neighbours to the substitution X-
site. In six cases, the unit cell was doubled in one direction to
produce a tetragonal supercell in which it was possible to surround
one X-site with two third-nearest cation neighbours of different
types. Configuration 1 was the lowest in energy. The others were
higher in energy typically by only 1 or 2 kJ mol)1, suggesting,
consistent with the work of Bosenick et al. (2000), that configura-
tions containing unfavourable Mg–Mg and Ca–Ca third-neighbour
interactions are nevertheless energetically accessible at elevated
temperatures, such as those in trace-element solid-melt partitioning
experiments. This is consistent with the Monte Carlo study of
Lavrentiev et al. (pers. comm.); experimentally Bosenick et al.
(1999) have shown that the observed extent of local Ca–Mg or-
dering is a function of garnet synthesis temperature.

Calculated lattice parameters for the lowest energy configura-
tion (1) of Py50Gr50 (a ¼ b ¼ c ¼ 11.592 Å) are 0.014 Å higher than
expected from linear interpolation of the cell edges of simulated end
members Py and Gr. Our calculated positive volume of mixing,

0.2 cm3 mol)1, from the lowest energy configuration, is in excellent
agreement with experimental data (see Bosenick and Geiger 1997);
all the configurations we used gave positive values of DVmix broadly
similar to this.

Trace element defect calculations and solution energies

Simulated structures were used as a basis for defect energy calcu-
lations. In every computational run, one or more defects was in-
troduced into the crystal, e.g. for homovalent substitution, one
divalent cation at the X-site of a perfect garnet lattice was replaced
by one divalent trace element cation. Initial, unrelaxed defect
energies, Udef,i, were calculated without allowing any atoms to
move. The total energy of the defective system was then minimized
by allowing the surrounding ions to relax to accommodate the
misfit cation(s). Positions of cores and shells of ions around the
introduced defect(s) were optimized using the two-region approach
(Catlow and Mackrodt 1982). The inner region containing the
defect(s) typically contained 400 ions. Final defect energies after
relaxation, Udef,f, were obtained at convergence.

We simulated incorporation of divalent and trivalent cations
into garnets with compositions Py25Gr75, Py50Gr50 and Py75Gr25
using hybrid X-site potentials, and into garnets of compositions
Py4Gr96, Py50Gr50 and Py96Gr4 using discrete Mg and Ca sites. In
the discrete case, for composition Py50Gr50 we examined substitu-
tions for different local Mg–Ca distributions around the central X-
site in order to study explicitly the effects of local X-site ordering on
the energetics of trace-element incorporation, as discussed below.
This included all possible orderings of the four nearest-neighbours
and two third-neighbours orderings (and combinations thereof). In
addition, we examined a number of orderings of the eight second
neighbours, which preliminary calculations showed, have little ef-
fect on the overall solution energies.

For heterovalent substituents, to ensure overall charge balance,
a second trace element was inserted simultaneously into the crystal,
in one of the nearest-neighbour cation sites. Previous work (Purton
et al. 1997a) has demonstrated the importance of defect association
in forsterite and diopside. Initial simulations on end-member gar-
nets (Van Westrenen, unpublished data) showed that association of
defects lowers the final defect energy of any trivalent trace element
in any of the end-member garnets by an additional 57–66 kJ mol)1

with respect to isolated defects. Thus we present results here only
for associated defects. For the trivalent trace cations studied
here (REE and Sc) a Li cation was placed on the adjacent (nearest-
neighbour) X-site. This choice of compensating defect has
been shown to be the most energy-efficient for these elements in
end-member garnets by Van Westrenen et al. (2000a). For more
details of the computational procedure, see Van Westrenen et al.
(2000a).

The difference between initial and final defect energies is called
the relaxation energy, Urel. This energy is analogous to Ustrain in
Eq.(1) and for a particular trace element is a function only of the
properties of the garnet crystal. Blundy and Wood (1994) assumed
that Ustrain is equal to the total energy involved in the mineral-melt
exchange process. The limitations of this assumption are discussed
by Purton et al. (1996). The actual partitioning process in mineral-
melt systems involves (1) removal of a trace element (plus accom-
panying charge-balancing ions) from the melt, (2) incorporation of
the trace element(s) in the mineral structure, and (3) insertion of
one or more substituted host cations into the melt. Our defect
calculations take account of the second process. To take some
account of the first and last processes we have also calculated trace-
element solution energies (Usol), making a simple assumption about
the melt environment. For homovalent substitutions, process (1)
through (3) can be described by the substitution reaction (in this
case for trace element J2+ replacing a Ca in Py50Gr50 with discrete
Ca and Mg sites):

JOðmÞ þ Ca1:5Mg1:5Al2Si3O12ðsÞ ¼ JCa0:5Mg1:5Al2Si3O12ðsÞ
þ CaOðmÞ ð6Þ

Fig. 3 Detail of the structure of pyrope–grossular garnet, showing the
SiO4 tetrahedra, AlO6 octahedra and Mg/Ca cations. The dodecahe-
dra surrounding the Mg/Ca atoms are not included for clarity. The
first-, second- and third-nearest neighbour cation–cation distances are
highlighted. Unusually, the third-nearest neighbour interaction
between cations at the centre of two dodecahedra that share edges
with the same SiO4 tetrahedron is markedly repulsive for like cations.
For further discussion see text
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In Eq.(6), (m) and (s) refer to the melt and solid phase, respectively.
As discussed by Van Westrenen et al. (2000a), we approximate the
energy associated with Eq. (6), Usol, by

Usol ¼ Udef;fðJÞ þ UlatðCaOÞ � UlatðJOÞ ð7Þ

where Ulat denotes lattice energy. In applying Eq.(7), we thus
assume that the local environments of Ca2+ and J2+ in a melt are
equivalent to their environments in the corresponding solid binary
oxides (i.e., CaO and JO). Lattice energies for the binary oxides,
obtained with the same interionic potentials used for the garnet
simulations, are given in Allan et al. (2001). For garnets with
hybrid X-sites, the cation(s) released into the melt are themselves
hybrids. Lattice energies for the corresponding hybrid binary
oxides were calculated as a weighted average of the lattice ener-
gies of CaO and MgO. Analogous equations can be constructed
for the partitioning process of trivalent trace elements (see Eqs. 4
and 7 in Van Westrenen et al. 2000a), again assuming that the
local environments of J3+ and Li are equivalent to their envi-
ronments in the corresponding solid binary oxides (J2O3 and
Li2O). The effects of other assumptions as to local melt envi-
ronments have been discussed extensively for the end-member
compounds in Van Westrenen et al. (2000a). Finally, we stress
that although all the simulations reported in this paper are in the
static limit, it is known that defect energies in this limit are in
close agreement with defect enthalpies at elevated temperatures
(Taylor et al. 1997).

Results and discussion

Garnets with hybrid X-sites

In this section we discuss the results for our two types of
simulations in turn, starting with Urel and Usol for trace
elements entering the hybrid X-sites of garnets Py75Gr25,
Py50Gr50, and Py25Gr75. Table 3 gives the calculated
values of Urel and Usol for divalent and trivalent trace

elements entering these mixtures, together with
end-member data for pure Py and Gr.).

In Fig. 4, these energies are plotted against trace el-
ement radius. The parabolic dependence of both Urel

and Usol is apparent in all garnets for both divalent and
trivalent cations. The curved lines in Fig. 4 are non-
linear least-squares fits of both Urel and Usol to the form
of the Brice equation (Eq. 1). Best-fit parameters r0 and
EX are given in Tables 4 and 5 for relaxation and solu-
tion energies, respectively. Figs. 5a and b show the
variations in r0 and EX along the Py–Gr join for relax-
ation and solution energies.

Figure 5a shows that for relaxation energies, the
optimum ionic radius for trivalent cations, r0(3+), is
significantly larger (by 0.04 – 0.07 Å) than r0 for
divalent cations, r0(2+). This was also observed in our
end-member study (Van Westrenen et al. 2000a). The
solution energy data, however, show significantly
different behaviour, with r0(3+)< r0(2+). In our
experiments, r0(3+) is always around 0.05 Å smaller
than r0(2+), although the latter is rather poorly con-
strained (e.g. Van Westrenen et al. 1998). The effective
Young’s moduli for divalent substitutions onto the X-
site, EX(2+), are much smaller than EX (3+) for both
relaxation and solution energies. For example, Usol data
for Py75Gr25 show that EX increases from
363 ± 21 GPa (divalent trace elements) to 562 ± 34
GPa (trivalent elements). This is entirely consistent with
results from our partitioning experiments and with
theoretical considerations (e.g. Van Westrenen et al.
2000a; see also Hazen and Finger 1979). The r0 values
show that Usol data are most consistent with experi-
mental observations. This reinforces the notion that

Table 3 Relaxation and solution energies in garnets along the pyrope–grossular join, using hybrid interatomic potentialsa

Trace
elementb

Py100 Py75Gr25 Py50Gr50 Py25Gr75 Gr100

Urel Usol Urel Usol Urel Usol Urel Usol Urel Usol

Divalent cations
Ni 0.22 2.64 8.74 )17.4 26.3 )16.9 49.4 )0.06 76.1 29.8
Mg 0.00 0.00 6.27 )21.7 21.9 )22.6 43.5 )6.79 68.9 22.3
Co 0.46 )6.64 3.49 )30.1 16.7 )32.3 36.3 )17.6 60.0 10.7
Fe 2.39 )6.03 1.04 )32.8 10.6 )37.7 27.1 )25.2 48.2 1.24
Mn 13.6 0.29 1.07 )33.6 1.62 )44.4 10.8 )36.7 25.7 )14.1
Ca 95.6 70.0 45.9 17.9 17.7 )7.93 3.91 )12.5 0.00 0.00
Eu 262 213 164 143 98.7 101 55.4 83.7 27.7 85.2
Sr 268 206 168 136 101 95.5 56.6 78.0 28.3 79.9
Ba 497 470 351 379 246 318 170 284 115 272

Trivalent cations
Sc 279 87 271 28.7 279 11.8 308 32.0 348 82.0
Lu 271 109 234 34.0 219 4.92 230 13.5 256 54.0
Yb 273 117 233 40.2 215 9.62 224 16.7 248 56.0
Ho 284 134 233 52.8 206 18.4 209 21.8 228 58.0
Gd 307 170 240 81.0 201 41.4 194 39.6 206 71.3
Eu 315 178 244 88.0 201 47.1 192 44.1 201 74.7
Nd 350 220 263 122 207 76.5 187 68.6 189 94.9
La 420 287 307 181 230 128 194 113 183 133

aAll energies in kJ mol)1. Lattice energies used for calculation of solution energies from Allan et al. (2001)
bAll trivalent cations are charged-balanced by a coupled Li substitution on adjacent X-site
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Fig. 4a–d Variation of calcu-
lated relaxation and solution
energies along the pyrope-gros-
sular join using hybrid inter-
atomic potentials. a 2+
relaxation energies. b 3+ re-
laxation energies. c 2+ solution
energies. d 3+ solution ener-
gies. Curves are non-linear
least-squares fits of the data to
Eq. (1). Data from Table 3,
ionic radii from Shannon (1976)

Table 4 Fits of hybrid-potential relaxation energy data (Table 3)
to the Brice equation (Eq. 1)a. Values in parentheses are one stan-
dard deviation of last digit

Garnet 2+ defects 3+ defects

r0
a EX r0 EX

Py100 0.89(1) 401(14) 0.938(3) 748(22)
Py75Gr25 0.93(1) 321(9) 0.999(1) 679(14)
Py50Gr50 1.00(1) 300(10) 1.059(1) 621(12)
Py25Gr75 1.07(1) 296(11) 1.112(3) 574(15)
Gr100 1.12(1) 289(14) 1.160(5) 541(19)

a r0 in Å, EX in GPa

Table 5 Fits of hybrid-potential solution energy data (Table 3) to
the Brice equation (Eq. 1)a. Values in parentheses are one standard
deviation of last digit

Garnet 2+ defects 3+ defects

r0
a EX r0 EX

Py100 0.88(2) 350(21) 0.857(12) 551(39)
Py75Gr25 0.93(1) 363(21) 0.899(8) 562(34)
Py50Gr50 0.97(1) 371(21) 0.929(6) 572(30)
Py25Gr75 1.00(1) 376(21) 0.957(4) 581(21)
Gr100 1.03(1) 378(22) 0.981(3) 580(23)

a r0 in Å, EX in GPa
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Usol, rather than Urel, is the energy most appropriate
for models of mineral-melt partitioning energetics (Van
Westrenen et al. 2000a). Variations in Usol should
therefore be most amenable to comparison with varia-
tions in experimental D values.

Both the position of the minimum energy and the
curvature of the plots, given by their effective Young’s
moduli E, vary systematically along the Py–Gr join
(Fig. 5a,b). For solution energies, both r0(2+) and
r0(3+) increase linearly, while EX(2+) and EX(3+)
appear approximately constant. The increase in r0 with
increasing Ca content for both divalent and trivalent
cations is in agreement with both experiment (Fig. 1b)

and crystallographic data on variations in <X–O>
distances in garnets (e.g. Armbruster et al. 1992; Gan-
guly et al. 1993). The constancy of EX, however, is not
consistent with experimental data [which show EX (Py)
>EX(Gr), Van Westrenen et al. 1999]. This will be dis-
cussed further in the following section.

It is clear from Fig. 5 that trends in r0 and EX for
garnets with hybrid X-sites do not show anomalous
behaviour along the Py–Gr join. No anomalously low
EX values exist for intermediate garnets. The presence of
X-sites in intermediate Py–Gr garnets showing hybrid
behaviour, with properties intermediate between Mg
and Ca X-sites, cannot explain the behaviour observed
experimentally (Fig. 1b).

Garnets with discrete Mg and Ca sites

For our simulations of divalent trace elements substi-
tuting into Gr100, Py4Gr96, Py96Gr4, and Py100 garnets
with discrete Ca and Mg sites, Udef,f, Urel and Usol are
summarized in Table 6. In this table elements are listed
in order of increasing ionic radius. For substitution at a
Mg site, the relaxation energies of trace elements smaller
than Ca2+ are all larger in Py4Gr96 (where all first,
second and third neighbours of the Mg are Ca in a
primitive unit cell) than in the end-member pyrope itself.
The reverse is true for Ca2+ itself and larger cations. For
substitution at a Ca site, the relaxation energies for all
elements are larger in Py96Gr4 (where all first, second
and third neighbours of the Ca are Mg) than in pure
grossular.

Calculated Mg–O bond lengths in Py4Gr96 are only
slightly larger than in pyrope, and the calculated Ca–O
interatomic distances in Py96Gr4 are only slightly smaller
than those in grossular, in keeping with the results of
Bosenick et al. (2000). Mg2+ ions thus preserve largely
pyrope-type and Ca2+ ions a predominant grossular-
type environments even in this dilute limit. As empha-
sized by Bosenick et al. (2000), these local cation-oxygen
bond lengths are very different from averaged X–O bond
distances such as those obtained from X-ray diffraction
for compositions such as these. Our conclusions are not
in line with those of Quartieri et al. (1995), who suggest,
from a XANES study of the local crystal environment of
Ca in garnets, that the Ca environment in Mg-rich
garnets is similar to the Mg environment in the same
garnets, and different from the Ca environment in pure
grossular.

Similarly, the new trace element optimizes its local
environment, i.e. interatomic distances and orienta-
tions adjust locally to the most energetically favourable
values. The garnet structure has no degrees of freedom
to permit local tilting or rotation of rigid AlO6 octa-
hedra or SiO4 tetrahedra since there are no rigid unit
modes. Any tilting or rotation of a tetrahedron or
octahedron in the framework to accommodate a trace-
element cation in a resized dodecahedral X site would
require the same motion of all polyhedra in the

Fig. 5a, b Variation of fit parameters r0 and EX for divalent and
trivalent trace elements along the Py–Gr join using hybrid interionic
potentials. a Fits to relaxation energy data (see Table 4). b Fits to
solution energy data (see Table 5). Error bars are ± 1r.Open symbols
are fits to experimental data (Fig. 1b) shown for comparison
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framework structure, and the collective distortion in-
volved would be high in energy. An alternative, much
lower in energy, is distortion, primarily of the tetra-
hedra and octahedra which are direct neighbours of
the trace element.

Small changes in environment can nevertheless lead
to relatively large changes in defect thermodynamics. It
is clear from Table 6 that at the Mg site the ions equal in
size or smaller than Mn2+ have larger relaxation ener-
gies in Py4Gr96, but the overall defect energy is lower for
all ions equal in size or larger than Mg2+ and only
higher for Ni2+, which is slightly smaller than Mg2+.
The lowering in energy is particularly marked for the
largest ions (Ba2+ and Sr2+). This arises because the
cation exchange process (Purton et al. 1996) for an iso-
valent substitution involves both the strain (relaxation)
energies and the replacement of one set of short-range
interaction energies with another. The trends are con-
sistent with a Mg site effectively slightly larger in
Py4Gr96 than in pyrope.

For substitution at Ca2+, relaxation energies are
larger for all elements in Py96Gr4 and defect energies
lower for elements smaller than Mn2+ and larger for the
remainder. This is consistent with a Ca site effectively
slightly smaller in Py96Gr4 than in grossular.

In most cases, the changes in the defect energy from
end-member to dilute mixture, involving both relaxation
and interaction contributions, are much larger than
those in the relaxation energies. For example for Sr2+ at

Ca sites, there is a difference in 6 kJ mol)1 in Urel be-
tween Py96Gr4 and grossular, but Udef,f is over 50 kJ
mol)1 higher in Py96Gr4. This is even more marked for
the larger Ba2+.

The difference in Udef,f is carried over into the solu-
tion energies (see Eq. 7) and so the solution energies in
Table 6 show some remarkable features. The calculated
solution energy for the largest ion, Ba2+, at a Mg site in
Py4Gr96 is comparable to that at a Ca site in grossular
itself. The lowest value of Usol for the smallest ion, Ni2+,
in Table 6 is at a Ca2+ site in Py96Gr4 and is consider-
ably lower than for Ni2+ substitution in pyrope and in
grossular.

The results in Table 6 suggest that it is important to
consider local orderings in detail. We have therefore
considered all possible nearest-neighbour and third-
neighbour orderings and a large number of second-
neighbour orderings on dopant incorporation in
Py50Gr50. Table 7 collects together the lowest solution
energies for Ni2+, Fe2+, Mn2+, Sr2+ and Ba2+ in
Py50Gy50.

Consider first the incorporation of Ba2+. The nature
of the four first cation neighbours influences the solution
energy Usol in the same ways as for the more dilute so-
lutions. In addition, the makeup of the third-nearest
neighbour shell has a striking influence on the defect
energies and thus, via Eq. (7) on the solution energies. If
substitution of the X-site cation removes an unfavour-
able third-neighbour interaction by introducing a size

Table 6 Calculated Udef,f, Urel, and Usol in pyrope, grossular, Py4Gr96, and Py96Gr4 solid solutions with distinct Mg and Ca sitesa

Substituent Substitution on Mg site Substitution on Ca site

Py100 Py4Gr96 Gr100 Py96Gr4

Udef,f Urel Usol Udef,f Urel Usol Udef,f Urel Usol Udef,f Urel Usol

Ni )33.4 0.22 2.64 )32.2 3.79 3.84 )523 76.1 29.8 )615 85.5 )61.6
Mg 0.00 0.00 0.00 0.00 0.00 )495 68.9 22.3 )582 77.6 )64.6
Co 31.4 0.46 )6.64 23.0 4.06 )15.0 )468 60.0 10.7 )551 67.9 )71.6
Fe 100 2.39 )6.03 81.9 5.82 )24.1 )410 48.2 1.24 )483 54.8 )71.7
Mn 243 13.6 0.29 204 16.2 )38.8 )288 25.7 )14.1 )341 29.8 )66.9
Ca 587 95.6 70.0 494 91.3 )22.9 0.00 0.00 0.00 0.00
Eu 940 262 213 791 240 64.1 295 27.7 85.2 348 33.7 138
Sr 923 268 206 776 245 58.8 280 28.3 79.9 332 34.5 132
Ba 1433 497 470 1216 448 253 718 115 272 838 134 392

aAll energies in kJ mol)1. Lattice energies used for calculation of solution energies from Allan et al. (2001)

Table 7 Calculated lowest energy solution energies (Usol) in pyrope (Py), grossular (Gr) and Py50Gr50
a

Substituent Usol

(Py)
Usol

(Gr)
Usol

(Py50Gr50)
Xb Nearest

neighboursb
Third
nearest
neighboursb

Ni 2.64 29.8 )50 Ca 4 Mg 2 Ca
Fe )6.03 1.24 )60 Ca 2 Mg + 2 Ca 2 Ca
Mn 0.29 )14.1 )51 Ca 2 Mg + 2 Ca 2 Ca
Sr 206 79.9 56 Mg 4 Ca 2 Mg
Ba 470 272 252 Mg 4 Ca 2 Mg

aAll energies in kJ mol)1. Lattice energies used for calculation of solution energies from Allan et al. (2001)
bX specifies the cation replaced in Py50Gy50. Subsequent columns denote the first and third nearest neighbours of X in the solid solution

225



mismatch between the ions in this position, then the
defect and solution energies are lower, as the overall
compression or extension of the tetrahedron between the
two dodecahedra is reduced.

For example, Usol for replacement of an Mg2+ by
Ba2+ is »20–40 kJ mol)1 lower, depending on whether
the first neighbours are all Mg or all Ca, with lower
values for Ca neighbours. This is not unexpected, since
the X-site in this case will be slightly larger, consistent
with the trends noted in Table 6. The solution energy
varies by an even larger figure – as much as 75 kJ mol)1

– with the nature of the third neighbour. Overall, the
lowest solution energy for Ba2+ substitution at an Mg
site is 252 kJ mol)1 and at a Ca site 290 kJ mol)1. These
values are remarkable as they indicate that the most
favourable substitution site for the large Ba2+ in Py50 –
Gr50 is not necessarily a Ca2+ site as expected from
Goldschmidt’s first rule (Goldschmidt 1937). Substitu-
tion in Py50Gr50 can take place at an Mg site depending
on the local environment of such a site. For comparison,
the solution energies of Ba2+ in pure pyrope and
grossular are 470 and 272 kJ mol)1, respectively (Van
Westrenen et al. 2000a). The variation in calculated so-
lution energy along the pyrope–grossular join is thus
non-linear with values for Py50Gr50 lower than those for
either end member. In addition, the possibility of sub-
stitution at more than one sublattice will lower the free
energy of substitution because of the larger configura-
tional entropy change accompanying the disordering of
two sublattices rather than one. All these factors result
in a predicted higher solubility of Ba2+ in Py50Gy50 than
that expected from an interpolation between the end-
member compounds.

The same remarks apply to Sr2+ substitution. Once
again, Sr2+ is more soluble in Py50Gr50 than in pyrope
or grossular, with a value of 56 kJ mol)1 of Usol at a Mg
site, compared to 80 kJ mol)1 in grossular and
206 kJ mol)1 in pyrope.

A similar set of arguments can be used to rationalize
the defect energies for Ni2+, remembering that Ni2+ is
only slightly smaller than Mg2+. Introducing an Ni2+ at
an X-site where all four third neighbours are Ca2+ is
favoured relative to a site with two or four Mg2+ third
neighbours due to the removal of the effective repulsion
between an ion (Ni2+) and a third neighbour (Mg2+)
similar in size. This is sufficiently important for the
lowest solution energy for Ni2+ ()50 kJ mol)1) to be for
replacement of a Ca2+ rather than substitution of a
Mg2+ (lowest energy +4.5 kJ mol)1). Once more this
represents a deviation from Goldschmidt’s first rule. We
have also carried out calculations for Fe2+ and Mn2+ in
Py50Gy50. These lie between Mg2+and Ca2+ in size but
are closer to Mg2+. Like Ni2+, these ions are predicted
to substitute at a Ca2+ site which possesses two Ca2+

third neighbours, and solution energies are lower than in
either of the end-member compounds.

It is worth noting that though there is a correlation
between the relaxation and defect energies, the variation
in the relaxation energies themselves is not sufficient to

make the two types of X-site energetically indistin-
guishable. The variation in the defect energies is larger
(as with Table 6) due to the additional interaction term
and, together with the difference in lattice energy of CaO
and MgO, is responsible for the solution energies at the
two types of site to become comparable.

We have carried out calculations of defect energies
for trace elements in Py50Gy50 for environments varying
second as well as first and third neighbours. There are
eight such second neighbours and these are located in
two dodecahedra, one of which is edge- and the other
corner-shared to the same tetrahedron. Changes in the
second neighbour compensate somewhat for first-
neighbour changes. For example, for identical host ca-
tion and third neighbours, defect energies (and thus
solution energies) with two Mg, two Ca first neighbours
and eight Ca second neighbours are very close to those
with four Ca first neighbours and eight Mg second
neighbours. Overall, our conclusions regarding the im-
portance of the third neighbours are unchanged.

Figure 6 summarizes our overall conclusions. All five
trace-element cations, Ni2+, Fe2+, Mn2+, Sr2+ and
Ba2+ appear more soluble in Py50Gy50 than in either
pyrope or grossular end members. The discussion above
suggest this is due to (1) the slight overall change in size
of the X-sites themselves in the solid solution compared
to the end members and (2) the increased scope for
removal of unfavourable interactions between third
nearest neighbours of the same size. Thus a large ion
may substitute preferentially for a Mg2+ (with two
Mg2+ third neighbours) rather than a Ca2+ and a small
ion may substitute preferentially for a Ca2+ (with two
Ca2+ third neighbours) rather than for a Mg2+. This
suggests that the simple idea of an optimum cation
radius for substitution of a given ion which is transfer-
able from one system to another, as suggested by
Goldschmidt, breaks down for the garnet solid solution.
It also provides an explanation for the anomalous trace-
element partitioning behaviour of the solid solution,
since the net result from a partitioning point of view is a
broadening of the solution energy vs. ionic radius curve
with the lower curvature suggesting an apparent ‘‘soft-
ening’’ of the structure (Fig. 6b) and a lower site
modulus. The minimum in the curve for Py50Gy50 in
Fig. 6b lies between Ca2+ and Mg2+, and the curvature
and thus the effective Young’s modulus are lower than
that for either pyrope or grossular.

We have not carried out a comprehensive study of the
solution energies of trivalent trace elements substituting
into these systems. In this case, the nature of the charge-
balancing substitution is an additional factor that in-
fluences the resulting energies, so there are even more
local configurations to examine. For example, replacing
an Mg by an La could be charge-balanced by the in-
sertion of an Li in place of another Mg or Ca in
Py50Gr50, while in pure pyrope Li can only replace Mg.
Preliminary results show that the most energy-efficient
charge-balancing mechanism involves the replacement
of another Ca with Li, and that overall the solution
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energy variation is similar to that for the divalent ele-
ments, with solution energies lower in the mixed garnet
than in either end member.

Hence, although structurally the Ca and Mg sites
clearly remain distinct in the solid solution, energetically
they may appear equivalent, depending on the local

environment. EXAFS data on the local relaxation
around Yb3+ in pure Py and Gr (Quartieri et al. 1999)
confirm that the structural relaxation around trace ele-
ments in the garnet X-site is extremely localized.

There are other possible alternative explanations of
the anomalous partitioning behaviour. Firstly, changes
in the melt environment of trace elements (e.g., a change
in co-ordination number) can have a marked influence
on calculated solution energies and resulting r0 and EX

values. An explanation for the anomalous behaviour of
EX in Fig. 1b is that the trace-element environment in
melt coexisting with the intermediate Py–Gr garnets is
different from their environment in the other experi-
ments. This is somewhat unlikely for two reasons. First,
all experiments were performed in the same simple
system (CMAS), without addition of volatiles. The
polymerization of the melts is very similar for all melts
reported in Van Westrenen et al. (1999). For example,
NBO/T (non-bridging oxygens per tetrahedral cation, a
measure of melt polymerization) is in the restricted
range 0.7–1.1, and Al / (Al + Si) in the range 0.27–0.43.
There is therefore little scope for dramatic variations in
melt environment along the Py-Gr join. Secondly, as
shown by the examples given above, changes in EX

would be accompanied by changes in r0, and these are
not observed (Fig. 1b).

A second possibility, brought forward by Van
Westrenen et al. (1999), is that the reduced elastic mo-
duli are a precursor effect for a garnet symmetry change
(Carpenter and Salje 1998; Boffa Ballaran et al. 1999;
Carpenter et al. 1999), possibly accompanied by local
Ca–Mg ordering. There is a complete lack of experi-
mental observations on phase transitions in intermediate
Py–Gr garnets. IR band softenings observed by Boffa
Ballaran et al. (1999) show that intermediate garnets, as
opposed to near-end-member Py and Gr, would be
prime candidates for such a transition at high pressures.
The extensive spectroscopic studies of Merli et al. (1995)
and Ungaretti et al. (1995) do suggest that anomalous
structural behaviour occurs along the Py-Gr join.
However, recent Monte Carlo studies (Lavrentiev pers.
comm. 2002) do not appear to show any loss of sym-
metry at pressures up to 15 GPa. Clearly, X-site order-
ing and the possibility of phase transitions in Py–Gr
mixtures under high pressures require further investi-
gation. Additionally, more spectroscopic data on the
actual local environment of trace elements in Py–Gr
solid solutions would be highly useful. Quartieri et al.
(1999) looked only at pure Py and Gr garnets in their
study of the local environment of Yb in garnet, so that
there was no possibility of two-site behaviour as only
one type X-site cation (Mg or Ca) was present in any
experiment.

Finally, there is considerable scope for further com-
putational work. It would be useful to develop general
rules of thumb for solid solutions more generally, for
heterovalent defects as well as isovalent defects, and
analyze a range of solid solutions with and without rigid
unit modes. Equations. (6) and (7) make a very simple

Fig. 6 a Variation of solution energies for five divalent trace elements
across the pyrope–grossular join, assuming discrete Ca andMg garnet
X-sites. Arrows indicate that solution energies in solid solutions are
significantly lower than expected from a linear interpolation between
end-member values (indicated by the dotted lines for Ni, Ba and Sr).
b Solution energies as a function of ionic radius for pyrope, grossular
and Py50Gr50. Curves are non-linear least-squares fits of the data to
Eq. (1). Data from Tables 6 and 7, ionic radii from Shannon (1976).
Note that the best-fit value of apparent bulk modulus EX in Py50Gr50
is smaller than the best-fit values for both pure pyrope and pure
grossular
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assumption regarding the melt environment and ener-
getics of both major and trace cations, and further in-
formation here is urgently needed.

Conclusions

We have carried out a wide range of atomistic simula-
tions of trace element incorporation into the X-site of
Py–Gr solid solutions. Relaxation energies, defect ener-
gies and solution energies were obtained using two dif-
ferent approaches, the first a hybrid, mean-field approach
and the second assuming discrete Ca and Mg sites. The
hybrid model, which averages out local distortions in the
garnet structure, is shown to be inadequate.

Our results using the discrete model suggest that trace
elements are more soluble in Py50Gy50 than in either
end-member compound. Physically, this is due to small
changes in size of the X-sites and the scope for removal
of unfavourable interactions between third nearest
neighbours of the same size. Depending on the local
environment, large ions may substitute preferentially for
an Mg2+ and small ions for a Ca2+ ion. The concept
that, for a given cation, there is an optimum radius for a
substituent that is transferable from system to system, as
suggested by Goldschmidt, appears to fail for the py-
rope–grossular solid solution. The solubilities of trace
elements in Py50Gy50 also provide an explanation for the
anomalous trace-element partitioning behaviour of the
solid solution.
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