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Abstract—Solution energies are calculated for a wide range of heterovalent impurities in forsterite and
diopside, using atomistic simulation techniques and a consistent set of interatomic potentials to represent
the non-Coulombic interactions between the ions. The calculations allow explicitly for ionic relaxation.
Association between a charged defect and its compensating defect(s) cannot be neglected at low tempera-
tures; however, at concentrations of 10-100 ppm a large proportion will be dissociated at temperatures
above 1000 K. The variation of calculated solution energy with ion size reflects the variation in the
relaxation energies, and often shows a parabolic variation with ionic radius. For the pure mineral, the
calculated solution energies always show a minimum at a radius corresponding to that of the host
cation; for impure clinopyroxene (with <1 Ca per formula unit) the optimum cation radius varies with
composition, as observed experimentally. A marked variation in the calculated solution energies for
trivalent trace elements is predicted depending on which alkali-metal cation is the compensating defect.
At the M1 site in diopside the lowest calculated solution energy is for trivalent ions coupled with the
substitution of a Na* ion on the M2 site, i.e. M**(MI1)/Na*(M2); at M2 it is X **(M2)/Na* (M2).

X *(M2)/Li* (M1) is the lowest energy pairing for forsterite.

1. INTRODUCTION

Trace element partition between coexisting phases is crucial
to many geochemical and industrial processes and an under-
standing of the physical and chemical controls on the distri-
bution of trace metals has implications for processes as wide
ranging as Earth differentiation and radioactive waste man-
agement. The solubility of a dopant cation in a mineral de-
pends on the charge and size of the element (Goldschmidt,
1937) in addition to the pressure (P), temperature (7),
and phase composition (x). Recent advances in analytical
techniques have lead to extensive experimental investiga-
tions of trace element partitioning between minerals and
melts in simple silicates (e.g., Hart and Dunn, 1993; Ken-
nedy et al., 1993; Beattie, 1994, Blundy and Wood, 1994;
Hauri et al., 1994; LaTourette et al., 1995). The present
study integrates these experimental approaches with modern
computer atomistic simulation techniques for the energetics
of heterovalent element substitution into crystal lattices.

In a previous paper, Paper I (Purton et al., 1996), we
have presented a theoretical study, using modern computer
simulation techniques, of the solution energies of isovalent
substitution of cations in a range of minerals (calcium oxide,
diopside, enstatite, and forsterite ). We now turn our attention
to heterovalent substitution of trivalent and monovalent cat-
ions in two minerals—the olivine forsterite (Mg,Si0O,) and
the clinopyroxene diopside (CaMgSi,0O,). Compared to iso-
valent substitution the incorporation of ions with a charge
different from that of the host cation (e.g., the substitution
of Ca?* by La®") presents several additional problems. First,
the polarization of the lattice resulting from a charged defect
must be considered . In addition, to maintain charge neutral-
ity, the charged defect must be accompanied by a charge-
compensating defect(s). In the minerals studied here, this

Copyright © 1997 Elsevier Science Ltd

will in general be either a vacancy (e.g., two tripositive
ions and a divalent-cation vacancy replacing three divalent
cations) or another heterovalent cation (e.g., two Ca”* ions
may be replaced by La** and Li*, or Ca’* and Si** may
be replaced together by La** and Al**, respectively). As a
result, any theoretical study must take into account both
substituent and possible compensating defects and their spa-
tial arrangement.

The aim of this paper is to consider the fundamental phys-
ics and chemistry underlying the incorporation of cation im-
purities. With this in mind, we have not attempted at this
stage to calculate mineral-melt partition coefficients directly,
but rather calculate solution energies in the dilute limit for
a wide range of possible aliovalent substitutions. Here, we
concentrate on the solution energies of trace element cations
in the solid mineral and consider the energetics of the appro-
priate exchange reactions. For example, for CaO in forsterite
(Paper I), the exchange reaction is

CaO(s) + MgMgSiO,(s) = MgO(s) + CaMgSiO,(s) (1)

and for Y*" in forsterite possible charge compensation
mechanisms can be expressed in a similar manner,

Li,O(s) + Y,0s3(s) + 2MgMgSiO,(s)

= 2MgO(s) + 2YLiSiO4(s) (2a)
2Y,0;(s) + 3MgMgSiO,(s)
= 6MgO(s) + 3Y.3[1:58104(s) (2b)
ALOs(s) + Y.0:(s) + 2MgMgSiOy(s)
= 2MgO(s) + 28i0,(s) + 2YMgAIlO4(s) (2¢)

where [ denotes a cation vacancy. It is straightforward to
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write similar equations for other possible charge-balance
mechanisms.

The equilibrium constant, K, for any such reaction is re-
lated to the free energy change for the reaction, AG,, sange-
via

—RTIhK = AGexchange = AHeu'hange - TASe.n'hunge (3)

where AH,vpunges @a0d A S,onange are the corresponding en-
thalpy and entropy change, respectively. AS,, e reflects
the difference in configurational entropy together with the
change in vibrational entropy of the solid. In this paper,
we consider the solution energies in the dilute limit and
concentrate on AH,, nun... The energetics for different com-
pensation mechanisms (e.g., reactions 2a,b,c) in this limit
are also considered in detail.

2. THEORETICAL METHODS

The theoretical methods (Catlow and Mackrodt, 1982) used in
the present paper have been used recently to study a wide range of
doped ternary systems with perovskite-related structures (e.g., the
cuprates La,CuO, and Nd,CuQ,; Allan and Mackrodt, 1993) and
on a variety of silicate minerals (e.g., Catlow and Price, 1990; Patel
et al., 1991; Pavlides and Catlow, 1994). Consequently, we present
only a short summary. The calculations are formulated within the
framework of an ionic model—integral ionic charges are assigned
based on accepted chemical valence and electron counting, i.e., 2+
for Ca and Mg, 4+ for Si, and 2- for O. The shell model of Dick
and Overhauser (1958) is used to take some account of electronic
polarisation. The defect energies are obtained by the customary two
region approach (Catlow and Mackrodt, 1982) in which the total
energy of the defective system is minimized by variation of the
nuclear positions and shell displacements around the defect. In the
inner region immediately around the defect, consisting of ~400
species, the forces are determined explicitly to obtain the relaxations.
In the outer region, these are estimated using the Mott-Littleton
approximation (Mott and Littleton, 1938; Lidiard, 1989).

The success of any simulation relies on the accuracy and transfer-
ability of the short-range interatomic potentials. We have used a
well-established potential set based on the transferability of poten-
tials from SiO, (Sanders et al., 1984) and the constituent binary
oxides (Lewis and Catlow, 1985). This model has been demon-
strated to reproduce accurately the structure and thermodynamic
properties of a wide range of mineral structures (Patel et al., 1991;
Winkler et al., 1991). The calculated cell parameters for the minerals
studied in this paper are given in Table 2 of Paper 1 and so are not
reproduced here. Buckingham potentials for the interaction between
the dopant cations and O were obtained either from Lewis and
Catlow (1985) or from fitting to the structure (and, if available, the
elastic properties) of the binary oxide. The full set of potentials are
given in Table 1.

As in our previous paper, the defect energies reported here are
internal energies in the athermal limit (i.e., 0 K in the absence of
lattice vibrations). However, defect enthalpies usually show only a
small temperature dependence, and to a good approximation defect
enthalpies (/) at elevated temperatures often equal the change in
internal energy (uy) at O K (#,(7)~ uy,(0)), thus explaining why
calculated energies so often agree well with enthalpies measured at
high temperatures. The theoretical justification for this and some
examples have been discussed by Catlow et al. (1981) and Allan et
al. (1987).

In geochemical studies, partitioning is often related to the ionic
radius of the substituent cation. For presentation purposes and the
discussion of trends, we use the appropriate ionic radius for the
coordination number of the atom of interest, from Shannon (1976).
For the ionic radii, we have taken the values for sixfold coordination,
except for substitution at the M2 site in diopside where the values
for eightfold coordination are more appropriate. It is important to
note that the simulation approach makes no use of the concept of

Table 1. Interatomic potential parameters, in addition to those of
Paper 1. Cation/cation potentials are purely Coulombic. A short-
range cutoff of 12 A was used throughout.

A J C
Interaction (kJ mol™) (A) (kJ mol™" A%
Lit/0*" 25331.2 0.3476 0.0
Na‘/0*~ 122231.1 0.3065 0.0
K*/0%" 65652.1 0.3798 0.0
Rb*/0*" 88706.4 0.3772 0.0
Cs*/0* 62676.656 0.4142 6207.8
Sct107 125372.6 0.3312 0.0
La*~ /0% 138909.5 0.3651 0.0
Nd* /0%~ 133139.7 0.3601 0.0
Eu**/0*~ 131026.6 0.3556 0.0
Gd**/0* 128981.1 0.3551 0.0
Ho**/0*~ 130274.0 0.3487 0.0
Lu’*/0%" 129974.9 0.3430 0.0
Yb*t/0O*" 126356.8 0.3462 0.0

ionic radius and so avoids all the problems associated with the
precise definition of, and suitable values for, this quantity. This is
even more acute for coupled substitutions with heterovalent trace
elements where there are two or more defects possibly strongly
associated since the effective radius in such situations is not at all
clear.

3. RESULTS

3.1. Relaxation and Defect Energies for Isolated
Defects

The calculated defect energies for isolated monovalent
and trivalent impurities in forsterite and diopside, allowing
for full relaxation of the lattice around each defect, are plot-
ted in Fig. 1. The results for the isovalent dopants considered
in Paper 1 are also shown. For a given cation radius, the
defect energies follow the order monovalent > divalent
> trivalent. The defect energies for all the monovalent ions
are positive and for the trivalent ions, negative, exactly as
expected from classical electrostatics. Of course, this does
not mean that the overall solution energies for univalent ions
are all positive and are all negative for trivalent ions since
other terms also contribute to the solution energies. The
variation of defect energy with ionic radius is approximately
linear in all cases (Fig. 1); for both compounds, the slope
of these lines increases in the order

monovalent < divalent < trivalent.

The defect energies in forsterite (M1 and M2) generally
show a slight preference of univalent cations for the M1 site
and the others, for the M2 site. In diopside, the defect energ-
ies are lower for univalent cations at the M1 site (Mg) than
at M2 (Ca), whereas the opposite is true for trivalent and
divalent impurities. For the reasons discussed below, this
does not necessarily mean that univalent cations will substi-
tute at M1 and the others at M2.

One of the important contributions to the overall defect
energy is the relaxation energy, which is the energy released
as the ions move to accommodate the new cation. The values
of the relaxation energy for the isolated defects are shown
in Fig. 2 for substitution at M1 and M2 sites in diopside.
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Fig. 1. Calculated defect energies (kJ mol™) vs. ionic radius (A)
for isovalent and heterovalent substituents in forsterite and diopside.
Open symbols denote substitution at the M2 site; filled symbols,
substitution at M1 (this notation is adhered to for all the figures).
Only the lowest defect energy is plotted.

For forsterite, the relaxation energies are similar to those for
the M1 site in diopside (Fig. 2a). It is important to note
that, unlike for the isovalent substituents in Paper 1, the
relaxation energy for charged defects is always greater than
zero, due to the polarisation of the lattice. For isovalent
dopants, the minimum relaxation energy occurs, in all cases
we have studied, at the radius closest to that of the host
cation (i.e., Mg in the MI site and Ca in the M2 site of
diopside). The curves for the univalent and trivalent cations
on the M2 site in diopside in Fig. 2b do not quite reach
minima, and if present, these minima would not correspond
to the ionic radius of Ca**. The relaxation energies for isova-
lent dopants show an approximate parabolic dependence on
the ionic radius of the dopant (Paper 1). The parabolae for
univalent impurities are less tight than for divalent impuri-
ties, while the 3+ curves are much tighter. For trivalent
impurities in the M1 site of diopside (Fig. 2a) and the M1
and M2 sites of forsterite, the variation with relaxation en-
ergy with size is more asymmetric.
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For a given dopant charge, the curvature of the parabolae
varies from site to site in a fashion consistent with what is
known about their relative compressibilities. For example,
in diopside, the relaxation energy for cations of a given
charge at the M1 site shows a tighter parabola than that for
the M2 site, in keeping with experimental studies which
show that the M2 site is more compressible than the M1 site
(Levien and Prewitt, 1981). The analogous plots for any of
the Mg sites in forsterite are similar to that for the M1 site
in diopside, suggesting that it is the rigidity of the local
environment rather than that of the bulk crystal that largely
determines the relaxation energy (cf. the cation-anion poly-
hedra approach of Hazen and Finger, 1979).

3.2. Relaxation and Defect Energies for Charge
Compensated Defects

As we have already stressed, electroneutrality requires that
incorporation of charged defects must be accompanied by
charge-compensating defect(s). For M*" trace elements
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_Fig. 2. Calculated relaxation energies (kJ mol™') vs. ionic radius
( A) for (isolated) isovalent and heterovalent substituents in diopside
at the M1 and M2 sites.
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(which at a 2+ site carry an effective positive charge), the
most likely possibilities include cation vacancies or coupled
substitutions such as M ™ substitution for a further divalent
cation or aluminium substitution for silicon on the tetrahedral
site. For M ™ trace elements (which have an effective nega-
tive charge at a 2+ site), we have considered both O vacancy
compensation and M** substitution for a further divalent
cation.

Charge compensation may occur with two isolated defects
located so remote from each other that the total energy is
the sum of the isolated defects, i.e.,

EM* ) + E(M™) (4a)

Alternatively two defects may be situated as close as possible
to one another, allowing for the association energy between
the oppositely charged defects. We denote this by

E(M* + M%) (4b)

Plots of isolated and associated defects are shown in Figs.
3 and 4, respectively. A comparison of these figures shows
clearly that in the case of forsterite and the M1 site of diop-
side, the effect of association is large, reducing the formation
energies by roughly 100 kJ mol™'. This is expected from a
simple calculation of the interaction between two point
charges separated by 3 A (the M1-MI distance in these
minerals ) in a continuum with a dielectric constant set equal
to that of a typical silicate mineral (~6). In the M2 site,
the difference in defect energies is much less and varies
between ~20 and 100 k] mol™'. This is due to the M2-M2
site separation being greater, 4.5 A, than the M1-M1 dis-
tance, 3.2 A.

Figure 5 shows the calculated relaxation energies for these
associated defects in forsterite and diopside plotted against
the trivalent cation radius. A comparison of Figs. 5 and 2
shows that the variation of relaxation energy with size is
similar at the M1 site in the two situations, but quite different
at the M2 site in diopside. On both sites, the relaxation
energies exhibit a parabolic dependence on the ionic radius,
and the minimum occurs at the radius corresponding to that
of the host cation. Again, the relaxation energy for these
defects is always positive and never zero, and the curvature
of these parabolae is tighter on M1 than M2. It is important
to note that for the associated defects at the M1 and the M2
site in forsterite and diopside, the relaxation energies are not
additive and cannot be predicted simply from the separate
relaxations for the isolated defects.

3.3. Solution Energies

Several factors in addition to the defect energies contribute
to the solution energies for forsterite and diopside. Even
though the size of the dopant ion provides a useful rule of
thumb, the magnitude of the solution energy and, where
there is more than one possible cation site, the mode of
solution cannot always be obtained solely from a simple
consideration of the size of the impurity ion. For the substitu-
tions considered in Paper 1, it was straightforward within
the spirit of the approach of Henderson and Kracek (1927)
to calculate solution energies, Ec, and Eyy,, for the reactions
(cf. reaction 1),
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Fig. 3. Calculated defect energies (kJ mol™) vs. ionic radius (A)
for substitution by +3 substituents in forsterite and diopside. The
energies plotted correspond to the sum of the isolated defects (+3
ion + charge-compensating defect), as described in the text (Eqn.
4a). See Fig. 6 caption for defect pairings.

MO + Cac, — Mg, + CaO (5a)
MO + Mgy, = My, + MgO (5b)

which are written using Kréger-Vink notation (Kroger and
Vink, 1956). M denotes a trace divalent cation, and sub-
scripts Mg and Ca identify the host cation on the site of
interest. Clearly these reactions involve not only the defect
energies calculated above, but also the difference in lattice
energies E,,, between the two binary oxides also involved,
i.e., for Eqn. Sa:

Eq = E(Mc.) + Eiw(Ca0) — E(MO)  (5¢)

It is somewhat more involved to extend this approach to
heterovalent trace impurities since there are several possibili-
ties depending on the mode of defect compensation. Rewrit-
ing reactions of Eqn. 2a—c, using Kroger-Vink notation, for
trivalent dopants at an Mg site:



Heterovalent trace element partitioning between minerals and silicate melts 3931

WM,0; + %X,0 + 2Mgy, = Miy, + Xig + 2MgO
Esol = E(M;\ig + Xl’\lg) + 2E1an(MgO)
~ hEu(My0:) — hEW(X,0) (6a)

EM,0; + Mgy, = Mg + bV + HMgO

Eq = HhE(2Mjyy + Vi)
+ hE(MgO) — %HE(M,0;) (6b)
'6M,0; + 'hALO; + Mgy, + Sis; —
M, + Al§ + MgO + SiO,
Eq = E(My, + Alg) + En(MgO) + E(Si0;)

- l/zElan(M203) — hE.(ALO;) (6¢)
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Fig. 4. Calculated defect energies (k] mol™') vs. ionic radius (A)
for substitution by +3 substituents in forsterite and diopside. The
energies plotted correspond to the sum of the associated defects (+3
ion + charge-compensating defect), as described in the text (Eqn.
4b). Defect pairings as in Fig. 3.
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Fig. 5. Calculated relaxation energies (kJ mol™") vs. ionic radius
(A) for substitution by +3 substituents in forsterite and diopside. The
energies plotted correspond to the sum of the associated defects (+3
ion + charge-compensating defect), as described in the text (Eqn.
4b). As in Fig. 1, open symbols denote M2; filled symbols, M1.

For a monovalent dopant, in addition to reaction 6a, a further
possibility is

1hX,0 + %00 + Mgy, = X 4y + 6V 5 — MgO
Eq=%EQ2Xis +V §) + Eu(MgO) — hEw(X:0)  (6d)

The corresponding equations for incorporation at the Ca site
follow immediately.

As part of this work, we have also investigated compensa-
tion of defects with an effective positive (negative) charge
by O interstitials ( vacancies ) and for trivalent impurities the
energetics of trivalent substitution for Mg coupled with Al
substitution for Si. These are all much higher in energy than
the reactions listed above and our results for 3+ ions in
forsterite do not support the suggestion of Colson et al.
(1989) that Sc** and Yb*" ions are compensated by cation
vacancies, which have large formation energies. Neither do
our results support the suggestion of Beattie (1994) that the
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favoured compensation mechanism for olivine is coupled
substitution M>*/Al**(Si), according to Eqn. 6¢. This is
clear from a comparison of Figs. 6 and 7, which shows that
for forsterite, the solution energies for Al’* compensation
are typically 200 kJ mol ™' larger than that for Li* compensa-
tion.

Figure 6 shows the variation of solution energy (per mole
of dopant M or X ions) with ionic radius for forsterite and
diopside. For each dopant only, that mode of solution which
gives the lowest solution energy is plotted, which in every
case involves the associated defect pair between the impurity
and its compensating defect. For forsterite (Fig. 6a), the
lowest mode of solution is for the trivalent ion to occupy
the M2 site with a compensating Li™ cation on the M1 site.
The solution energy reflects both the distance between the
ions and the elasticity of the site. The X **(M2)/Li*(M1)
configuration is lower in energy than the X°*(M2)/
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Fig. 6. Calculated solution energies (kJ mol™') vs. ionic radius
(A) for substitution by +3 ions in forsterite and in diopside. For
each dopant, only that mode of solution which gives the lowest
solution energy (Eqn. 6a) is plotted, as described as in the text. For
forsterite this is X°*(M2)/Li*(M1) and for diopside, M** (M1)/
Na*(M2) and X**(M2)/Na*(M2).

J. A. Purton, N. L. Allan, and J. D. Blundy

500 ———r T T
L . La.
[ forsterite
_c' : Eu
g 450 i ca® -
2 v i
s [ ] 4
2 400 - Yb -
s . 1
. ¢ ‘
S s o
£ 3s50[ 8 . ]
= CPEu
2 %F" Gd
I 'ge o Y ]
300 | IR gc, U Y .Yr{ TS S R
0.5 0.6 0.7 0.8 0.9 1 1.1

ionic radius (A)

Fig. 7. Calculated solution energies (kJ mol™") vs. ionic radius
for trivalent ions in forsterite, assuming Al** compensation on the
tetrahedral site (as in Eqn. 6¢). Compare Fig. 6a.

Li*(M2) since the smallest M1-M2 distance is 3.26 A com-
pared with 3.89 A for the M2-M2 separation (note the dis-
tances are for the perfect relaxed structure). The solution
energy for X **(M1)/Li*(M1) is greater still in energy due
to the rigidity of the M1 site, which is therefore less tolerant
of trivalent dopant cations, despite the smallest M1-M1 dis-
tance being only 2.99 A In diopside (Fig. 6b), the most
favoured solution mechanisms are different since the M1
and M2 sites are occupied by different cations. At the M1
site, the lowest solution energy is observed for trivalent ions
coupled with the substitution of a Na* ion on the M2 site,
i.e., M**(M1)/Na*(M2). In contrast to forsterite, the low-
est energy for substitution of a trivalent ion on the M2 site
is coupled with the substitution of a Na~ ion for a second
Ca’* ion, i.e., X **(M2)/Na*(M2).

For 3+ ions at the M1 and M2 sites in diopside and
forsterite, the calculated variation of solution energy with
ionic radius is parabolic with, as expected, a minimum at
the ‘‘optimum’’ radius, which is approximately that of the
host cation (Mg or Ca). All our calculated solution energies
agree with the rule of thumb that the most soluble dopants
are those closest in size to the host cation. For a given charge,
the origin of the parabolic dependence is not the variation
of the energies of the defect pair with ionic radius (which
increases approximately linearly with ionic radius — Fig. 4)
nor the variation of the difference in lattice energy between
M,0;/MgO (M,0,/Ca0) (which decreases with ionic ra-
dius), but is the sum of these two effects. The variation of
the solution energies from site to site mimics that of the
relaxation energies as described above, testifying once more
to the importance of the local environment in controlling
substitution.

An interesting conclusion to emerge from our study is
that we predict a marked variation in the calculated solution
energies for trivalent trace elements depending on which
alkali-metal cation is the compensating defect, as shown
graphically in Fig. 8. The solution energies are displayed for
univalent cations X * in forsterite (X *(M1)/Sc**(M2))
and diopside (Lu’*(M1)/X "(M2)), which are the lowest
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energy modes of solution. The most favourable univalent
cations for forsterite and diopside are Li~ and Na ™, respec-
tively, which would be expected from cation size arguments.
We emphasise that the nature of the charge balancing cations
is also important in the melt, and this would need to be taken
into account in a full treatment.

4. CRYSTAL CHEMICAL EFFECTS AND
CONFIGURATIONAL ENTROPY

In this section we assess briefly to what extent these find-
ings are influenced by the inclusion of crystal compositional
effects and configurational entropy.

So far we have not taken into account crystal composi-
tional effects. For example, our simulations are performed
on perfectly stoichiometric, ordered CaMgSi,05. In nature,
most natural clinopyroxene (cpx) compositions for which
partitioning data are available contain appreciable MgSiO;
in solid solution. Consequently, both Mg and Ca occur on
the M2 site. In order to examine the effect of this on the
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Fig. 8. Calculated solution energies (kJ mol™") vs. ionic radius
(A) for substitution by +1 ions in forsterite and in diopside, as
discussed in the text (Eqn. 6a).
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(A) for +3 ions in an idealised diopside containing an excess of
Mg** ions over Ca*" ions (Ca,s;1sMg;7/1651204). The solution ener-
gies correspond to Eqn. 7a and ¢ in the text.

calculated solution energies, we have performed defect
calculations on a diopside 2 X 2 X | supercell with 1/16
of the Ca®* ions on M2 replaced by Mg?* ions (i.e.,
Cays,16Mgi7/1651,0¢ ). There are several possibilities for the
incorporation of heterovalent trace elements according to

EM,0, + 5X,0 + Mgy, + Mgw —
M + Xl + 2MgO  (7a)

WM,0; + X0 + Mgy: + Cayp
My, + XM2 + MgO + CaO  (7b)
WM,0; + %X,0 + 2Mgyms = M + Xl + 2MgO  (7¢)

Figure 9 shows the resulting solution energies for the reac-
tion 7a and ¢, assuming associated defects. Reaction 7b is
always higher in energy than 7c and so these energies are
not shown. The solution energies for reaction 7a and ¢ (Fig.
9) are lower than the solution energies reported in the last
section (compare Fig. 6b). The solution energies assuming
isolated defects are reduced by similar amounts. The lowest
solution energies correspond to reaction 7c.

The results clearly demonstrate the possible importance
of crystal chemical effects since rare-earth elements, except
Lu and Yb, are now predicted to sit on the M2 site in prefer-
ence to M1, and the minimum in the solution energy is
shifted to a smaller ‘‘optimum’’ ionic radius, i.e., 1.1 A (Fig.
9)vs. >1.16 A (Fig. 6b). The occurrence of lanthanides on
M2 in cpx is consistent with the observed preference of these
elements for cpx vs. coexisting opx, which lacks a large M2
site (e.g., Pun and Papike, 1995).

Neither have we made any mention of configurational
entropy. Effects due to this will not be large enough to
influence the site preference of the lanthanides but can have
a profound influence upon the extent to which compensating
defects are associated at high equilibration temperature ob-
served in natural rocks. Turning to the defect concentrations
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themselves, we can apply the standard statistical thermody-
namic treatment (e.g., Fuller, 1972). Given, as calculated
earlier, typical association energies in the range 30-100 kJ
mol™, at experimental temperatures (~1400 K) and above
the fraction of associated defect pairs for a typical impurity
concentration of 10—100 ppm, will be very small. This has
implications for the derivation of activity-composition rela-
tions in high temperature trace-element bearing minerals.
These ideas will be developed further in a later paper.

5. IMPLICATIONS FOR TRACE ELEMENT
PARTITIONING

Direct comparison with experimental partition coefficients
is not possible since we have neglected finite concentration
effects and the melt. Nevertheless, the reactions we have
studied (e.g., reaction 1) are similar to those used in the
approach of Henderson and Kracek (1927) to trace-element
partitioning. It is worthwhile to compare the trends observed
experimentally (Fig. 10) with those in our calculated solu-
tion energies.

Some trends are common to both calculated solution ener-
gies and experimental partition coefficients, D, defined as
the concentration ratio of trace element in mineral to that in
melt. For ions of comparable size, +1 and +3 cations are
both calculated to be less soluble than the isovalent impuri-
ties considered in our earlier work. This is generally, but not
always, observed in the experimental partitioning results.
For example, La and Na are always observed to have lower
Ds than Ca in cpx (Blundy and Wood, 1994; Hauri et al.,
1994). Both the calculated solution energies (Figs. 6 and 9)
and the values of D for isovalent series of cations show a
parabolic dependence on ionic radius (Onuma et al., 1968;
Blundy and Wood, 1994). For both, too, the curvature of
the parabolae tends to increase with increasing charge.

A clear difference between the variation in the calculated
solution energies and that in the values of D is that the lowest
solution energy always occurs at a radius corresponding to
that of the host cation. For example, the experimental maxi-
mum D in diopside for +3 ions at the M2 site appears to
occur for an ionic radius ~1.0 A (Wood and Blundy, 1997),
whereas the calculated minimum in the solution energies
(excluding crystal chemical effects) is at a much larger ra-
dius—similar to that of Ca’* in eightfold coordination. In
stoichiometric, ordered diopside, all the 3+ cations smaller
than and including Sm®* are predicted to substitute at the
M1 site, whereas experimentally the REEs appear to substi-
tute for Ca>* (M2). If we include crystal chemical effects,
explicitly placing Mg?** ions on some Ca*"* sites, the mini-
mum in the solution energies is shifted to a smaller ionic
radius and the REEs are more soluble at the M2 site. For
our calculated solution energies, the optimum lanthanide
changes from La** to Nd**. However, the rare-earth element
with the largest value of D is Dy. Experiment as well as
calculation shows the optimum cation radius can be a sensi-
tive function of crystal chemistry, e.g., Wood and Blundy
(1997) show that the optimum cation radius for the M2 in
diopside decreases with increasing A1** content and decreas-
ing Ca content of the cpx.
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Fig. 10. Experimentally determined mineral-melt partition coeffi-
cients for a range of cations plotted vs. ionic radius for the minerals
(a) olivine (Beattie, 1994) and (b) clinopyroxene (Hauri et al.,
1994). One standard-deviation analytical error bars are smaller than
the symbol except where shown. The values for Al on M1 and Mg
on M2 in clinopyroxene and Al on MI in olivine are calculated
from the structural formula. The value of Dy; for olivine is calculated
for the experimental conditions and composition frorn the expression
in Beattie et al. (1991). In (b), curves are fitted to the data as
described in Blundy and Wood (1994) to illustrate the presence of
two maxima corresponding to the M1 and M2 sites. The two broken
curves are fitted to the individual sites Dy, and Dy, while the solid
curve denotes the summed variation Dy, + Dy.. The bold lines are
for 3+ cations and the thin lines for 2+ cations.

Differences between the trends displayed by the calculated
solution energies and the experimental partition coefficients
indicate the need for a more elaborate model, taking into
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account factors such as melt structure, entropy, and cation
ordering. In addition, at this stage, our calculations cannot
take account of variations in crystal field or Jahn-Teller ener-
gies with site geometry. These can be important, for exam-
ple, in Fig. 10b where the partition coefficient for Cr** is
larger than that for Sc**.

6. CONCLUSIONS

In this paper we have calculated solution energies for a
wide range of heterovalent impurities in forsterite and diop-
side, using atomistic simulation techniques and a consistent
set of interatomic potentials to represent the non-Coulombic
interactions between the ions. It is worth stressing that our
approach relies only on the transferability of potentials be-
tween different structures and makes no assumptions con-
cerning either the elasticity or the anisotropic nature of the
mineral. The local environment is taken into account as a
matter of course, and there is no need to adopt any empirical
fitting procedure. The calculations allow for the effects of
the polarization of the lattice by the charged defects and
explicitly for ionic relaxation close to the dopant.

Our results show that in these minerals association be-
tween a charged defect and its compensating defect(s) can-
not be neglected at low temperatures. Preliminary calcula-
tions suggest that at concentrations of 10—100 ppm, a large
proportion will be dissociated at temperatures above 1000 K.
The variation of calculated solution energy with ion size
reflects the variation in the relaxation energies and often
shows a parabolic variation with ionic radius. For the pure
mineral, the calculated solution energies always show a mini-
mum at a radius corresponding to that of the host cation,
even though there are several terms contributing to the over-
all solution energy—for impure cpx, we note that the opti-
mum cation radius varies with composition, as observed ex-
perimentally. We predict a marked variation in the calculated
solution energies for trivalent trace elements, depending on
which alkali-metal cation is the compensating defect. For
example, for a given 3+ ion, the solubility should show a
marked difference according to whether Na® or K™ is also
present. There is clearly an urgent need for more experimen-
tal data with which to compare our results, e.g., direct mea-
surements as to the site preferences of trace elements in
diopside.

At the M1 site in diopside, the lowest calculated solution
energy is for trivalent ions coupled with the substitution of
a Na* ion on the M2 site, i.e., M**(M1)/Na (M2); at
M2, it is X **(M2)/Na*(M2). X**(M2)/Li*(M1) is the
lowest energy pairing for forsterite.

For forsterite, the trends in the calculated values of the
solution energies in the main reflect those in the available
olivine-melt trace element partition coefficients. This is not
so when comparing pure diopside with experimental cpx-
melt Ds, where it appears that factors such as the variations
in crystal composition, melt composition, and temperature
effects must be explicitly considered. Future work will con-
centrate on direct simulations of both melt and mineral so
as to calculate trace element partition coefficients directly,
considering also a range of defect concentrations, tempera-
ture effects, and configurational entropy.
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