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Abstract
We discuss how two techniques, based on (1) lattice statics/lattice dynamics
simulations and (2) Monte Carlo methods may be used to calculate the
thermodynamic properties of oxide mixtures at zero and high pressure.
The lattice statics/lattice dynamics calculations involve a full free energy
structural optimization of each of a number of configurations, followed
by thermodynamic averaging. Strategies for generating a suitable set of
configurations are discussed. We compare results obtained by random
generation with those obtained using radial distribution functions or explicit
symmetry arguments to obtain approximate or exact weightings respectively
for individual configurations. The Monte Carlo simulations include the explicit
interchange of cations and use the semigrand canonical ensemble for chemical
potential differences. Both methods are readily applied to high pressures
and elevated temperatures without the need for any new parametrization.
Agreement between the two techniques is better at high pressures where
anharmonic terms are smaller. We compare in detail the use of each technique
for properties such as enthalpies, entropies, volume and free energies of mixing
at zero and high pressure and thus calculation of the phase diagram. We assess
the vibrational contributions to these quantities and compare results with those
in the dilute limit. The techniques are illustrated throughout using MnO–MgO
and should be readily applicable to more complicated systems.

(Some figures in this article are in colour only in the electronic version)

4 On leave from: Institute of Inorganic Chemistry, 630090 Novosibirsk, Russia.

0953-8984/04/272751+20$30.00 © 2004 IOP Publishing Ltd Printed in the UK S2751

http://stacks.iop.org/JPhysCM/16/S2751


S2752 I T Todorov et al

1. Introduction

Grossly disordered minerals and non-ideal solid solutions, particularly of oxides, continue to
present considerable challenges to the theoretician. The cluster variation method (CVM) [1],
for example, widely used for metallic alloys, often performs poorly where species involved
are markedly dissimilar, as is usually the case in ceramics and minerals. In addition, the use
of parametrized Hamiltonians (e.g., of Ising type) is increasingly difficult beyond binary or
pseudobinary alloys. Disorder in ionic materials has chiefly been studied via point defect
calculations [2] (the dilute limit), with the first general-purpose code (HADES) pioneered by
Norgett in the early 1970s [3]. Another route has been via the use of a ‘supercell’ [4], in which a
periodic ‘superlattice’ of defects is introduced, extending throughout the macroscopic crystal;
an artificial ordering is thus imposed on the arrangement of defects by the periodic boundary
conditions. In this paper we discuss two multi-configuration techniques for solid solutions or
disordered systems with a finite impurity or defect content far from the dilute limit. Both of
these, unlike the point defect or supercell calculations, sample many different arrangements
of ions. Both are readily applied to high pressure and include thermal (vibrational) effects,
which have proved problematic for traditional methods [1].

The first of these builds on a highly efficient method for the fully dynamic structure
optimization of large unit cells which uses lattice statics and quasiharmonic lattice dynamics
(QLD). The accurate calculation of the free energy via QLD is quick and computationally
efficient and does not resort to lengthy thermodynamic integration. The full set of free energy
first derivatives is calculated analytically and a minimization of the free energy with respect
to all structural variables for large unit cells is possible [5, 6]. Here this technique is extended
to evaluate the free energies of solid solutions (including �Hmix, �Smix) and phase diagrams
at any pressure. This is achieved by forming a thermodynamic average of the free energies
of a number of configurations. We pay particular attention to the problem of how to choose
these configurations. No a priori assumptions are made regarding the configurational entropy
contribution and the vibrational contributions to thermodynamic quantities at any temperature
and pressure are determined straightforwardly.

The configurationally averaging differs in some important respects from CVM [7]. This
defines the energy of the system as an expansion of effective cluster interactions (ECIs).
These ECIs are calculated by fitting to the energy of several configurations. A large range of
further configurations can then be generated by applying the ECIs within the configuration to
calculate their energy. This method differs significantly from ours where all configurations
are relaxed. Each possible arrangement is not specifically optimized in CVM. Zunger et al [8]
have suggested the use of a special quasirandom structure (SQS) which mimics the properties
of the ensemble average. Where the interactions within the system are complex or long range
the number of ECIs that need to be defined in the CVM can make the expansion unfeasible [9].
Perovskites [10], for example, have proved problematic while application to carbonates [11]
has required an extremely time-consuming procedure for fitting.

The second technique is the well-known Monte Carlo method, extended in such a way
that both the atomic configuration and the atomic coordinates of all the atoms are changed.
We denote this approach as Monte Carlo exchange (MCX). While absolute values of the free
energy cannot be obtained readily from Monte Carlo simulations, the semigrand canonical
ensemble [12, 13] provides a convenient route to accurate chemical potential differences accu-
rately and hence the phase diagram. Simulations using this ensemble have been carried out for
liquids and alloys [14] but, to our knowledge, the technique remains unexplored for minerals.

We illustrate the methods throughout using the binary system MnO–MgO as an example,
a convenient choice for our purpose due to the mismatch in size between the two cations.
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While the emphasis in this paper is on the methodology, it is worth mentioning the conflicting
reports of the phase diagram of this system. As shown in [15], the experiments of Raghavan
et al [16] suggest a consolute temperature, Tc, as low as 600 K, whereas the results of Wood
et al [17] are consistent with a much larger Tc (≈1100 K) and a markedly asymmetric phase
diagram. The data of [16] are surprising bearing in mind the large two-phase region in the
CaO–MgO phase diagram, and the difference in ionic radius between Mn2+ and Mg2+, which
is substantial although smaller than between Ca2+ and Mg2+.

The structure of this paper is as follows. We first summarize the main features of the
configurational averaging via QLD and Monte Carlo methods. A wide range of thermodynamic
properties at zero pressure are then considered, including, for example, enthalpies, entropies,
Gibbs energies and volumes of mixing, and results from the two methods are compared in
detail. We then present results at high pressure (50 GPa). Finally we return to consider
the configurational averaging technique in detail and the problem of choice of configuration,
classifying configurations via their radial distribution function or space group symmetry.

2. Thermodynamics of solid solutions: theoretical methods

2.1. Lattice statics and dynamics

In principle a solid solution can assume any state in which each atom can be at any position. The
only states of practical importance away from the melting point will lie at the bottom of K local
minima in the energy of the system, i.e., they correspond to a given configuration. For each
configuration k, we suppose there are a number of states which correspond to small or moderate
changes in the internal and external lattice strains. States corresponding to large changes in
these strains have high energies and do not contribute significantly to the equilibrium properties
of the system. These are ignored. Using the label k = 1, . . . , K for the configuration, then
the enthalpy and Gibbs energy in the isobaric–isothermal (N PT ) ensemble are given by [18]

H =
∑K

k=1 Hk exp(−Gk/kBT )∑K
k=1 exp(−Gk/kBT )

, (1)

G = −kBT ln
K∑

k=1

exp(−Gk/kBT ) (2)

where kB is Boltzmann’s constant. Gk is the Gibbs energy for the relaxed structure of each
possible cation arrangement. We thus have expressions for any thermodynamic quantity in
terms of quantities obtained with particular configurations. The thermodynamic averaging is
performed over the results of a set of full free energy minimizations of different arrangements
(configurations) of the cations within a supercell.

It is useful to rewrite G as

G = −kBT ln K − kBT ln

( K∑
k=1

exp(−Gk/kBT )/K

)
(3)

where K is the total number of possible configurations for the supercell considered. The first
term in equation (3) is the ideal term, and the second the deviation from ideality. For other than
the smallest supercells it is impractical to sum over all K configurations and all summations
in equations (1) and (2) are restricted to K ′ configurations chosen at random; K in the second
term of equation (3) is replaced by K ′. Thus

H =
∑K ′

k=1 Hk exp(−Gk/kBT )∑K ′
k=1 exp(−Gk/kBT )

, (4)
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and

G = −kBT ln K − kBT ln

( K ′∑
k=1

exp(−Gk/kBT )/K ′
)

. (5)

We show later convergence in both these quantities can be reached using a manageable value of
K ′. The entropy is readily obtained from (H − G)/T . The minimizations of the free energies
of individual configurations are all carried out with the code SHELL [5].

The volume is given by an equation analogous to equation (4);

V =
∑K

k=1 Vk exp(−Gk/kBT )∑K
k=1 exp(−Gk/kBT )

, (6)

where Vk is the volume of configuration k.

2.2. Monte Carlo simulations

The Monte Carlo exchange simulations (MCX) have been described previously [19, 20]. These
are carried out within the N PT ensemble, i.e., both the atomic coordinates and cell dimensions
are allowed to vary during the simulation. Randomly selected atoms are moved at random in
order to take vibrational effects into account. In any step, a random choice is made whether
to attempt a random exchange between two atoms, a random displacement of an ion, or a
random change in the volume of the simulation box. To determine whether the change is
accepted or rejected, the usual Metropolis algorithm [21] is applied. The maximum changes
in the atomic displacements and the lattice parameters are governed by the variables rmax

and vmax respectively, and these are adjusted automatically during the equilibration part of
the simulation to maintain an acceptance ratio of approximately 0.3. Calculation of the free
energy is less straightforward than with QLD; semigrand canonical ensemble simulations are
used to calculate the difference in chemical potential of Mg and Mn ions. The conversion of
one species, B into another, A, is considered, and the resulting potential energy change �UB/A

determined. This is related to the change in chemical potential �µB/A by

�µB/A = −kBT ln

〈
NB

NA + 1
exp(−�UB/A/kBT )

〉
. (7)

Every fifth step (on average) of the MCX simulation we evaluate the energy associated
with the conversion of a randomly chosen Mg2+ ion to Mn2+, �UMg/Mn, and as the simulation
proceeds the average value of the exponential in equation (7) is determined. Note that the
change of Mg2+ into Mn2+ is not actually performed since the configuration remains unchanged
after evaluating �UMg/Mn, and that it is important to check consistency, i.e., here that identical
results are obtained considering the reverse transformation, i.e., of a randomly chosen Mn2+

to a Mg2+.
All calculations in this paper are based on a rigid ion model using two-body potentials,

taken from [22] to represent non-Coulombic interactions between the ions. In a few places,
where stated, we have also used the shell model [23] to allow for ionic polarization.

3. Thermodynamic properties at zero pressure

We start with results from QLD. Figure 1 shows values of the calculated enthalpy of mixing,
�Hmix, for a 50/50 mixture of MnO and MgO5 at 1000 K as a function of supercell size

5 For the 54-atom cell the 50/50 results are an arithmetic mean of those for cells containing 13Mn/14Mg and
14Mn/13Mg. All the results for these two compositions are indistinguishable on the scale of the graphs plotted in this
paper.
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Figure 1. Calculated values of �Hmix (kJ mol−1) for a 50/50 MnO–MgO composition at 1000 K
as a function of supercell size and number of configurations. The number attached to each curve
denotes the total number of atoms in each supercell and fcc, bcc and cub denote face-centred cubic,
body-centred cubic and cubic supercell symmetries respectively.

and number of (fully optimized) configurations, determined using equations (1) or (4) as
appropriate. All external and internal degrees of freedom are optimized for every configuration.
For a (cubic) 8-atom unit cell all six configurations for this composition are symmetrically
equivalent, and the resulting enthalpy of mixing is so high (8.8 kJ mol−1) that it is not included
in the plot. For all the cell sizes considered in figure 1, results for two different sets of
randomly chosen configurations are shown. For a 16-atom cell there are 70 configurations
for the 50/50 composition. The small number of configurations required for convergence is
striking. For the 32 cell satisfactory convergence in �Hmix (to 0.04 kJ mol−1) with number
of configurations is typically obtained with only ≈150 out of a total of 12 870 configurations.
To confirm the value of �Hmix for this cell, we have optimized all 12 870 arrangements and
the resulting value is unchanged from the value obtained with 150. Larger cells, for which
the total number of configurations is much larger (e.g., 2 × 107 for a 54-ion cell), need not
more than 100 configurations for satisfactory convergence of �Hmix. Very similar results are
obtained when the supercell is constrained to remain cubic during the optimization of each
configuration.

Convergence in �Hmix with respect to cell size is obtained with relatively small cells.
The trend is easier to see in figure 2, where values of �Hmix are plotted as a function of 1/N ,
where N is the total number of ions in the supercell. Each set of supercells with the same
superlattice type (face-centred, simple cubic or body-centred cubic) converge at a different
rate. As with point defect supercell calculations for MgO [4], face-centred cells appear to
converge fastest. For example, the difference in the value of �Hmix obtained using a 54-atom
cell and that obtained by extrapolation to infinite cell size is only ≈0.2 kJ mol−1.

Shown in figure 3 are values of �Hmix at 1000 K and zero pressure obtained with MCX,
using a simulation cell of 512 ions, and 4×107 steps, following initial equilibration of 1×107

steps. The plot shows there is good agreement between QLD and MCX6, despite QLD using
vastly less configurations than MCX and neglecting higher-order anharmonic terms (though
quantum effects are incorporated in QLD). The calculated �Hmix at 1000 K is symmetric with
a maximum of 5.4 kJ mol−1. No symmetry constraints are applied in any of the calculations.

6 In contrast MC simulations, without cation exchanges, show a strong variation of over 1 kJ mol−1 with the choice
of initial arrangement.
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Figure 2. �Hmix (kJ mol−1) at 1000 K for a 50/50 MnO–MgO composition versus 1/N where N
is the total number of atoms in the supercell.

Figure 3. �Hmix (kJ mol−1) at 1000 K for MnO–MgO as a function of composition calculated
using configurational quasiharmonic lattice dynamics (QLD) and using exchange Monte Carlo
(MCX). LS denotes values calculated using configurational averaging but with each configuration
minimized in the static limit, using lattice statics (rather than a full free energy minimization), as
described in the text. Two sets of experimental data (GP [24], RG [25]) are shown.

Agreement with [24] is satisfactory; the results do not show the asymmetry reported in [25].
We have discussed previously [18] the striking failure of mean-field approach and ‘hybrid’
potentials for �Hmix. Figure 4 shows the variation of �Hmix for the 50/50 mixture with
temperature, calculated using QLD and the 128-ion cell. Results from MCX are very similar,
indicating that �Hmix varies only slightly with temperature.

The volume of mixing, �Vmix, calculated via equation (6) converges more rapidly with
number of randomly chosen configurations than any other property considered in this paper.
For supercells with more than 16 ions less than 50 configurations are needed for satisfactory
convergence in �Vmix to 10−9 m3 mol

−1
. Figure 5 shows a plot of �Vmix with composition,

obtained from both QLD and MCX. The values are small and negative with a displacement
of the minimum away from the 50–50 composition towards a higher Mg content. There is a
larger difference between the MCX and QLD values than for �Hmix; both methods indicate
that �Vmix increases with temperature, with QLD indicating a larger variation than MCX.
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Figure 4. The variation of �Hmix (kJ mol−1) for the 50/50 MnO–MgO mixture with temperature
(QLD results for the 128-ion supercell).

Figure 5. The variation of �Vmix (10−9 m3 mol
−1

) for MnO–MgO with composition. The results
from configurational quasiharmonic lattice dynamics (QLD), exchange Monte Carlo (MCX) and
configurational averaging using the results of lattice statics minimizations (LS) are compared.

We turn to entropies of mixing, �Smix, calculated using QLD. In figure 6(a), �Smix, for
the 50/50 composition at 1000 K is plotted as a function of number of configurations. As in
figure 1, results for two different sets of randomly chosen configurations are shown for each
cell size. As with �Hmix and �Vmix, �Smix converges with number of configurations for every
cell size. Supercells with more than 16 atoms require no more than 150 configurations for
satisfactory convergence of �Smix (to 0.02 J mol−1 K

−1
). The convergence of �Smix with cell

size, shown in figure 6(b), is somewhat slower than that of �Hmix. For example, the difference
in the value of �Smix obtained using a 54-atom cell and that obtained by extrapolation to
infinite cell size is ≈0.5 J K−1 mol−1. We stress that �Smix includes both configurational and
vibrational contributions. The solid line in this figure indicates the ideal (bulk) entropy of
mixing for this composition (5.78 J mol−1 K

−1
). The excess �Smix is negative for smaller

cells (<64 ions), but changes sign for larger cells. We return to consider the configurational
and vibrational contributions in more detail in the next section. Figure 6(c) plots �Smix as
a function of composition at 1000 K. �Smix is larger than the ideal value for compositions
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(a) (b)

(c) (d)

Figure 6. (a) Values of �Smix (J K−1 mol
−1

) at 1000 K for a 50/50 MnO–MgO composition as
a function of supercell size and number of configurations. The number attached to each curve
denotes the total number of atoms in each supercell and fcc, bcc and cub denote face-centred

cubic, body-centred cubic and cubic supercell symmetries respectively. (b) �Smix (J K−1 mol
−1

)
at 1000 K for a 50/50 MnO–MgO composition versus 1/N where N is the total number of atoms

in the supercell. (c) �Smix (J K−1 mol
−1

) at 1000 K for MnO–MgO as a function of composition
calculated using configurational quasiharmonic lattice dynamics (QLD) (filled circles). The points
(hollow circles) labelled LS are values calculated using configurational averaging but with each
configuration minimized in the static limit, using lattice statics (rather than a full free energy
minimization), as described in the text. For comparison the ideal entropy of mixing is also shown

(dashed curve). (d) The variation of �Smix (J K−1 mol
−1

) for the 50/50 MnO–MgO mixture with
temperature (QLD results for the 128-ion supercell).

with xMn > ≈0.3 (ideal entropies of mixing of course do not include vibrational terms).
Figure 6(d) shows the small variation of �Smix with temperature for the 50/50 composition;
below 800 K �Smix is lower than the ideal value, reflecting the tendency for cluster formation
and incomplete random mixing at lower temperatures.

The calculation of the free energy of mixing is a severe test of our model since �Hmix and
−T �Smix are often very close in magnitude. This is illustrated for the 50/50 composition in
figures 7(a) and (b), which show that larger cell sizes and a greater number of configurations
are required for convergence. For the 32- and 128-atom supercells, for example, 250 and 100
configurations are required respectively for convergence (with number of configurations) to
less than 0.04 kJ mol−1. The difference in the value of �Gmix obtained using a 54-atom cell
and that obtained by extrapolation to infinite cell size is ≈−0.8 kJ mol−1. Nevertheless for
MnO–MgO 250 configurations with a supercell of 128 atoms are sufficient to ensure adequate
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(a) (b)

(c)

(e)

(d)

Figure 7. (a) Calculated values of �Gmix (kJ mol−1) for a 50/50 MnO–MgO composition at
1000 K as a function of supercell size and number of configurations. The number attached to each
curve denotes the total number of atoms in each supercell and fcc, bcc and cub denote face-centred
cubic, body-centred cubic and cubic supercell symmetries respectively. (b) �Gmix (kJ mol−1) at
1000 K for a 50/50 MnO–MgO composition versus 1/N where N is the total number of atoms in
the supercell. (c) Variation of �Gmix (kJ mol−1) for MnO–MgO with composition. The results are
calculated for a range of temperatures using configurational quasiharmonic lattice dynamics QLD.
(d) Demonstration of the importance of atomic relaxation. The variations of �Gmix (kJ mol−1) at
1000 K for MnO–MgO with composition, with and without relaxation are plotted. All calculations
configurational quasiharmonic lattice dynamics. (e) Variation of �Gmix (kJ mol−1) for MnO–MgO
with composition. The results are calculated for a range of temperatures using exchange Monte
Carlo (MCX).

convergence in the positions of the two minima in the �Gmix versus composition curves in
figure 7(c) which plots �Gmix versus xMn for this cell size over a wide range of temperatures.
The vital importance of allowing for atomic relaxation is shown strikingly in figure 7(d) which
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Figure 8. Phase diagrams for MnO–MgO at zero pressure calculated using QLD (circles), MCX
(squares), and from experiment [15] (triangles). Spinodals are also shown (dashed curves).

compares calculated �Gmix versus composition curves at 1000 K with and without relaxation.
In the absence of relaxation �Gmix is positive for all compositions studied in this system,
which illustrates, dramatically, the importance of relaxation.

Monte Carlo simulations at a given temperature in the semigrand canonical ensemble yield
the calculated variation of �µMg/Mn with composition. As in the Margules approximation [26],
we write the excess (non-ideal) free energy as a third-degree polynomial in the concentration:

Gexcess = (W1x2 + W2x1)x1x2 (8)

where x1 and x2 are the mole fractions of the components and the W are asymmetric interaction
parameters: W1, for example, is the energy of putting component 1 into component 2, and
vice versa. The chemical potential difference then consists of an ideal solution term and a
second-degree polynomial:

�µ

kBT
= �µ0

kBT
+ ln

(
x1

x2

)
+ W1x2(1 − 3x1) − W2x1(1 − 3x2). (9)

The results for �µ at each temperature were fitted to a curve of the form of equation (9).
Integration then gives the variation of free energy with composition, and the resulting �Gmix

versus composition curves are shown in figure 7(e). These curves are similar to those obtained
in figure 7(c) using QLD. There is also good agreement between �Smix values obtained via
the Monte Carlo free energy and enthalpy of mixing and those obtained from QLD.

Common tangent constructions to the data in figures 7(c) and (e) yield the calculated phase
diagrams and spinodals in figure 8. Also shown in the figure are those obtained by de Villiers
et al [15] using the experimental data of [17]. The agreement between the QLD and MCX
simulations is good, and our results provide strong support for the experimental results of
Wood et al [17], ruling out the formation of a complete solid solution at temperatures as low as
600 K, as suggested in [16]. The calculated phase diagram possesses a marked asymmetry with
MnO less soluble in MgO than MgO in MnO. The same type of asymmetry is also observed
in the CaO/MgO system, with the smaller cation more soluble in CaO than the larger cation
in MgO. The phase diagram obtained from the measurements of Wood et al [17] is more
asymmetric than those calculated. de Villiers et al [15] have discussed the experimental errors
and conclude this asymmetry should be smaller.
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Figure 9. Calculated phase diagrams for MnO–MgO at 0 and 50 GPa calculated using QLD and
LS configurational averaging. Spinodals are also shown (dashed curves).

3.1. Vibrational contributions and the ‘lattice statics’ approximation

All the calculations in the previous section involved the full free energy minimization of each
configuration. It is computationally much cheaper to optimize every configuration in the
static limit, using lattice statics (LS). When we refer below to LS values or, equivalently,
thermodynamic properties of the solid solutions in the static limit, configurationally averaged
values are evaluated using equations (1)–(5) replacing Gk with Hk (static). The vibrational
contribution to Hk and the vibrational entropy Sk are ignored. Not only is the minimization
of each configuration much cheaper but in addition only one set of runs over the composition
scale is required for all temperatures.

The curves labelled LS in figures 3, 5, and 6(c) show, in turn, �Hmix, �Vmix and �Smix

calculated using this approximation. All the curves show the same qualitative features as those
obtained using the full minimizations. An important further advantage of this comparison
is the ability to assess the vibrational contributions to each thermodynamic property. The
difference between the QLD and LS values represent this vibrational contribution (denoted
using the subscript ‘vib’). LS values of �Hmix are slightly smaller than the dynamic values.
The vibrational contributions are positive with a maximum of ≈0.16 kJ mol−1 at xMn ≈ 0.5.
The vibrational contributions to �Vmix are also positive, with the LS values more negative and
more symmetric about xMn = 0.5 than the full curve.

Neglecting effects due to thermal expansion, the LS values of �Smix represent the
configurational contribution to this quantity (denoted by the subscript ‘config’ below). The
LS values of �Smix are lower and smaller than the ideal entropy of mixing at all compositions.
�Smix(config) is thus smaller than the ideal, suggesting the mixing is not completely random.
As we seen the total �Smix is larger than the ideal value. This is due to positive vibrational
entropy terms. The maximum contribution of �Svibr

mix at 1000 K is 8% of the total �Smix for
xMn = 0.5.

Figure 9 shows the calculated phase diagram obtained using LS values of �Gmix. The
diagram is broadly similar to that obtained using the full dynamic free energies (figure 8), but
the consolute temperature is 160 K larger (an increase of ≈14%) and the corresponding value
of xMn closer to 0.5.

To assess the likely effects of the thermal expansion of the lattice, we have used the
ZSISA approximation [27] and carried out static limit minimizations, analogous to those just
described, at the volumes suggested for each configuration by the fully dynamic optimizations.
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This volume is kept fixed during the static optimization. The results of these calculations are
virtually indistinguishable from the full minimization.

3.2. Finite concentrations versus the point defect limit

Since traditionally most calculations relating to the incorporation of trace elements or impurities
in oxides have concentrated on the dilute limit, it is of interest to compare computed properties
at finite concentration with those predicted from calculations in the point defect limit. As
an example we consider the entropy. Point defect entropies, sp, of substitution at constant
pressure are given by

sp = sp(P, T ) = {Sdc(P, T ) − Spc(P, T )}/Nd (10)

where Sdc and Spc are the entropies of the microscopic defect crystal and perfect crystal,
respectively, and Nd is the total number of defects introduced into the microscopic crystal.
sp can be calculated as described previously in [4] using a supercell of pure MgO or MnO
containing 128 cations and the same cell (fully optimized) in which one cation is replaced by a
Mn2+ or Mg2+ respectively. Note there is no configurational entropy contribution to sp, which
arises entirely from differences in vibrational frequencies between the pure and defective
supercells. Convergence towards properties of an isolated defect occurs as the superlattice
spacing is increased and a suitable extrapolation procedure is discussed in [4].

The point defect entropy at constant pressure, sp of a Mn2+ substitutional defect in MgO or
a Mg2+ defect in MnO, was calculated using a large supercell (here 216 ions), using the method
described in [4]. When a Mg2+ ion in MgO is replaced by Mn2+, sp is ≈18.4 J K−1 mol−1 at
1000 K. This vibrational contribution is positive since it is dominated by the heavier Mn2+ and
the expansion of the lattice it produces, both of which decrease frequencies. Conversely when
a Mn2+ ion in MnO is replaced by Mg2+, sp is negative (≈−14.8 J mol−1 K−1 at 1000 K).
We can use these values to estimate vibrational contributions to �Smix assuming the dilute
limit quantities do not change with composition. Figure 10 plots �Svibr

mix determined using this
approximation and for comparison plots the values obtained from the difference of the QLD and
LS simulations as described above. It is clear that the point defect calculations are of limited
use between xMn = 0.2 and 0.8; in the middle of the composition range they overestimate
the vibrational contribution. A cheap approximation to the vibrational contribution at any
composition is the evaluation of the vibrational entropy of the lowest energy configuration.
Values of �Svibr

mix thus obtained are shown as the filled squares in figure 10 and all of these lie
close to the QLD/LD curve.

3.3. Other thermodynamic properties

In passing we briefly consider a few further thermodynamic properties. For solid solutions,
maxima are frequently observed in the variation of �Cp(mix) with temperature (e.g., [28]). For
our model system MnO–MgO, �Cp(mix) values for any composition show a characteristic
maximum at low temperatures (typically ≈190 K). The origin is vibrational (rather than
configurational) as the maximum is present in the curves for all the separate configurations.

We have also computed, using configurational averaging and the shell model, the
variation of the volumetric expansion coefficient, α, and the bulk modulus KT as a function
of composition at 1000 K. α shows positive deviations from that expected from a linear
interpolation between the end members with a maximum close to xMn ≈ 0.9. KT shows
a negative deviation from linearity. There appear to be little experimental data for oxide
solutions for comparison, which is a pity since properties such as α and KT are key quantities,
for example, in geophysical models [29] and our understanding of their variation incomplete.
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Figure 10. Calculated relative contribution of �Svibr
mix to �Smix for MnO/MgO at 1000 K and

zero pressure as a function of composition using combination of configurationally averaged lattice
dynamics and configurationally averaged lattice statics (QLD/LS). For comparison purposes, the
relative contributions obtained using minimum energy configuration approach (MEC) and the point
defect limits (as described in text) are also given.

4. Solid solutions at high pressure

It is straightforward to repeat the calculations for thermodynamicproperties at any pressure. To
illustrate this we turn to consider the behaviour of the MnO–MgO system at 50 GPa. No phase
transitions are expected at this pressure. Neither MnO or MgO undergo a phase transition until
the pressure is well in excess of this figure. As earlier we use both configurational averaging
and Monte Carlo exchange simulations.

The QLD simulations were carried out using the SHELL code and the same rigid ion
model as before with a 128-ion supercell with a face-centred cubic superlattice. Two different
sets of 250 randomly chosen configurations were taken into account at given temperature and
composition. MCX calculations were carried out as described earlier.

Figure 11 shows calculated values of �Hmix for MnO/MgO at 50 GPa obtained using QLD
and MCX. We see that there is excellent agreement between QLD and MCX. The calculated
�Hmix versus composition curves are symmetric with a maximum of ≈4.3 kJ mol−1. A
comparison between figures 3 and 11 indicates that �Hmix decreases with increasing pressure.
The variation of �Hmix with temperature at 50 GPa is even smaller than at zero pressure. The
same is true for the vibrational contributions to �Hmix, which are not only much smaller in
magnitude than those at zero pressure but are also now negative rather than positive. This
suggests there is a crossover pressure at which the vibrational contributions to �Hmix are zero.

Figure 12 plots �Smix for MnO/MgO at 50 GPa at 1000 K. The temperature dependence
is small. Values of �Smix obtained using lattice statics (LS), representing the configurational
contribution, and also ideal values are shown for comparison. �Smix decreases with pressure
and at 50 GPa is well below the ideal entropy of mixing, unlike at zero pressure (figure 6(c)).
As before, the difference between the QLD and LS results gives the vibrational contributions
to �Smix, �Svibr

mix , which decreases with increasing pressure, as does the relative contribution
of �Svibr

mix to �Smix.
�Vmix at 50 GPa is given in figure 13. QLD and Monte Carlo values of �Vmix are now

in much better agreement than at zero pressure, and the curves are more symmetric about
xMn = 0.5. Both QLD and MCX indicate �Vmix increases only slightly with temperature,
and less so than at zero pressure. Nevertheless this variation is consistent with the decrease in
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Figure 11. Calculated values of �Hmix (kJ mol−1) for MnO–MgO at 50 GPa at 1000 K using
configurationally averaged lattice dynamics (QLD) and exchange Monte Carlo (MCX).

Figure 12. Values of �Smix (J K−1 mol
−1

) for MnO–MgO at 50 GPa and 1000 K as a function
of composition. The results from configurational quasiharmonic lattice dynamics (QLD), and
configurational averaging using the results of lattice statics minimizations (LS) are shown. Results
calculated with QLD and LS. Ideal values are also plotted.

�Smix with pressure, since using a Maxwell relationship,(
∂�Vmix

∂T

)
P

= −
(

∂�Smix

∂ P

)
T

, (11)

and also with the decrease in �Hmix with pressure, since furthermore(
∂�Hmix

∂ P

)
T

= �Vmix + T

(
∂�Smix

∂ P

)
T

= �Vmix − T

(
∂�Vmix

∂T

)
P

< 0. (12)

Phase diagrams at zero and 50 GPa from QLD, LS and MCX are compared in figures 14(a)
and (b). The consolute temperature is predicted to decrease by approximately 150 K and
the phase diagram overall to become more symmetric. The agreement between MCX and
QLD is better at high pressures than at zero pressure, which presumably reflects the smaller
contribution from anharmonic terms at the smaller interionic distances at the higher pressure.
The LS phase diagram is also a closer match to that from the full QLD calculation reflecting the
smaller role played by the vibrational contributions. This is consistent with the much smaller
thermal expansion coefficient at high pressure by a factor of approximately three.
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Figure 13. Variation of �Vmix (10−9 m3 mol
−1

) for MnO–MgO at 50 GPa with composition.
Plots for both 700 and 1000 K are given. Results are from configurational quasiharmonic lattice
dynamics (QLD), exchange Monte Carlo (MCX) and configurational averaging using the results
of lattice statics minimizations (LS).

(a) (b)

Figure 14. (a) A comparison of calculated phase diagrams (QLD and MCX) of MnO–MgO at 0
and 50 GPa. Consolute temperatures and corresponding compositions are marked in each case.
(b) A comparison of calculated phase diagrams (QLD and LS) of MnO–MgO at 0 and 50 GPa.
Consolute temperatures and corresponding compositions are marked in each case.

5. Configurational averaging: classifying configurations via radial distribution
functions or space group symmetry

Results in previous sections were obtained by forming a thermodynamic average either over
all the configurations in a given cell or over a subset chosen at random. In this final section
we discuss other methods for selecting configurations.

Our first approach involves the calculation of the Mn–Mn radial distribution function
(RDF) for each configuration. We use the radial distribution functions for the purpose of
comparison. If two different configurations have the same RDF their unoptimized energies
will be the same in a pair potential model. One way to use the RDF is to compare the RDFs
of any newly generated configuration with those previously generated. If there is a match we
assign the thermodynamic properties of the old configuration to the new one and generate a
new configuration.
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Table 1. Distinct symmetries, radial distribution functions, static energies and volumes of all
arrangements for a 16-ion supercell with a face-centred cubic superlattice for the 50/50 mixture.
Radial distribution functions (RDFs) are labelled A, B and C, with the number in parentheses
denoting the number of symmetrically distinct configurations with the same RDF.

H , static V , volume N , number of S, space group R, type of

energy (kJ mol−1) (10−4 m3 mol
−1

) configurations (number) RDF

−3852.456 1.216 09 8 166 A(2)
−3852.451 1.216 10 8 227
−3850.701 1.217 20 48 74 B(1)
−3848.946 1.218 31 6 123 C(1)

Alternatively we can find the space group symmetry (SGS) of different configurations and
use this information to calculate the number of symmetry-related configurations [30]. Given
the space group [31], and the volume of the primitive cell of the configuration we find the total
number, Ntotal, of configurations symmetrically equivalent to a given configuration.

If two different configurations have the same relaxed static lattice energy then they have
the same space group symmetry. The converse is not true; two configurations can have the
same space group but different relaxed static energies. As with the RDFs, we can determine
the space group of any of the randomly generated configurations, together with the energy, and
use this to include the correct weighting of that configuration in the thermodynamic average.
We discard configurations subsequently generated if they are symmetrically and energetically
equivalent to any already considered.

We illustrate these methods with a 50/50 MnO–MgO mixture, using cells with 16, 32 and
64 ions at 1000 K. The discussion below is restricted to lattice statics (LS) rather than full free
energy optimizations of individual configurations. Results are presented from calculations
using the random generation, RDF and SGS approaches. The sizes of the two smaller cells
allow us also to generate all configurations for comparison. For the largest cell, due to the
large number of different configurations (≈6×108), an all configuration calculation is feasible
only using the RDF method.

5.1. 16-ion supercell

There are 70 configurations for a 50/50 mixture and this cell size. The calculated free energy at
1000 K using the LS approximation and all configurations in the thermodynamic averaging is
−3855.803 kJ mol−1. We see from table 1 that there are four sets of configurations each with
a different space group, and static lattice energy, but there are only three distinct RDFs. Two
sets of eight configurations have the same RDF but different optimized lattice energies which
differ by 0.005 kJ mol−1. Thus the use of the RDF method and the choice of one configuration
per RDF in the averaging leads to only a very small error in H and G of 0.002–0.003 kJ mol−1

(<5.2 × 10−5%). This error is negligible for our present purposes. The RDF method is also
much faster than any of the other methods due to the rapid comparison of configurations.

5.2. 32-ion supercell

There are now 12 870 configurations for a 50/50 mixture, and we have carried out static energy
minimizations on all of them. There are forty sets of configurations, such that the members of
each set have the same space group and the same (unrelaxed and relaxed) energy. But there
are only seven distinctive RDFs. Configurations may have the same space group but different
RDFs and thus different optimized energies, and configurations also exist with the same space
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Figure 15. Sketch of the RDF band-like splitting of the calculated energy spectrum of the 50/50
mixture of MnO/MgO at 1000 K using static lattice energies and a supercell containing 32 ions.
Mn–Mn RDFs are indicated by a letter and a number in brackets indicating the type of RDF and
the total number of different energies for configurations with this type of RDF. Also shown in the
plot are the numbers of different configurations having the same RDF. The lines denote the upper
(RDF(max)) and the lower limits (RDF(min)) of the different RDF energy bands.

Table 2. Thermodynamic properties of the 50/50 mixture at 1000 K using a 32-ion supercell with
a body-centred cubic superlattice, from a calculations using all configurations, and using the RDF
method.

G H V

Calculation (kJ mol−1) (kJ mol−1) (10−4 m3 mol
−1

)

All configurations −3857.191 −3852.426 1.2176
RDF −3857.194 −3852.428 1.2176
RDF(max) −3857.142 −3852.377 1.2176
RDF(min) −3857.244 −3852.479 1.2176

group and RDF but nevertheless different optimized energies. Collected together in table 2
are values of thermodynamic properties of the mixture calculated using all the configurations
and the RDF method. The RDF method is by far the most rapid, generating an error of only
≈0.003 kJ mol−1 (<1.3 × 10−4%) in the calculated value of G at 1000 K.

The separation in energy between configurations with the same RDF is always much
smaller than between configurations with different RDFs, as shown graphically in figure 15.
Energy splitting between configurations with the same RDFs lead to a set of ‘bands’. The
narrower the bands, the higher the accuracy of the RDF approach. The maximum spread
between of energy in a band, the ‘bandwidth’, 0.13 kJ mol−1, is negligible compared
with the energy range between the maximum and minimum energies of all configurations,
3.94 kJ mol−1.

We can also see from figure 15 the two situations where the RDF algorithm will be
most inaccurate. This happens when the randomization in the RDF algorithm generates
configurations from each RDF with energies from either only the top or only the bottom of the
different energy bands. These two extreme cases are indicated as RDF(min) and RDF(max),
in figure 15. The thermodynamic properties of the mixture calculated from these two cases
are shown in the last two rows of table 2. We see that the maximum deviation from the correct
value of G in these cases is only ±0.05 kJ mol−1 (±1.3 × 10−3%). This is so small that it
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Table 3. Values of thermodynamic properties of the 50/50 mixture of MnO/MgO at 1000 K
using configurationally averaged lattice statics and the 32-ion supercell. For the random and RDF
calculations two runs with 1000 configurations generated at random are carried out, as described
in the text.

G H

Calculation (kJ mol−1) (kJ mol−1)

All configurations −3857.191 −3852.426

Random(1) −3857.151 −3852.404
Random(−1) −3857.148 −3852.402

Random (average) −3857.150 −3852.403

RDF(1) −3857.153 −3852.404
RDF(−1) −3857.188 −3852.419

RDF(average) −3857.171 −3852.412

justifies the use of the RDF algorithm for larger supercells of MnO/MgO where we are not
able to carry out minimizations of all configurations.

How do thermodynamic properties calculated using these methods converge with number
of configurations? We have seen that for sufficient convergence of the configurationally
averaged properties of the mixture using a cell containing 32 ions, 1000 different arrangements
are required if generated at random. We have compared the values from a random based
approach with those from calculations using the RDF scheme described above—we compute
the RDF of any newly generated configuration and compare it with those for configurations
previously generated. If there is a match we assign the thermodynamic properties of the old
configuration to the new one. Two runs of configurations generated at random are used. Every
run is randomized differently, by a different seed (1 or −1) supplying a random generator
which generates different series of configurations. The results of this test after the generation
of the first 1000 configurations are listed in table 3. Again it is clear that errors introduced by
the both schemes are negligible for the purpose of this paper.

5.3. 64-ion supercell

There are 6.01 × 108 configurations for a 50/50 mixture of MnO–MgO using this cell size.
It is not feasible to carry out optimizations for so many configurations! The computer time
required for the static optimization of a single configuration is approximately 8 times larger
than that for a 32-ion cell and in addition there are more than 46 700 times more configurations
that the number for the 50/50 mixture with the 32-ion cell. However, it is feasible to carry out
a calculation in which we include one configuration selected at random from each RDF and
use the appropriate weighting for that RDF, since there are only 2656 distinct RDFs.

Listed in table 4 are values of thermodynamic properties of the mixture calculated using
randomly generated configurations, and by selecting one configuration at random from each
set of RDFs. Approximately 450 configurations were required in the previous section for
this cell for convergence of �Gmix to 0.02 kJ mol−1. All the values in table 4 are very close
and justify the choice of randomly chosen configurations previously. The RDF procedure is
particularly promising for future studies.

6. Final remarks

Solid solutions of ionic compounds have traditionally proved problematic for the theoretician.
We have presented a range of methods for the simulation of such solid solutions, the accurate
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Table 4. Values of thermodynamic properties of the 50/50 mixture using the 64-ion supercell. For
the random (±1) calculations two runs with 1000 configurations generated at random are carried
out, as described in the text. The RDF(full (±1)) calculations refer to two sets of calculations in
which one configuration is selected at random from each set of RDFs.

G H

Calculation (kJ mol−1) (kJ mol−1)

Random(1) −3857.525 −3852.346
Random(−1) −3857.538 −3852.352

Random (average) −3857.532 −3852.349

RDF(full(1)) −3857.527 −3852.351
RDF(full(−1)) −3857.529 −3852.352

RDF(full)(average) −3857.528 −3852.351

calculation of thermodynamic quantities of mixing, and also for the calculation of phase
diagrams. No empirical data are required. All the methods sample many configurations,
explicitly considering different arrangements of ions, and allow for the local structural
relaxation surrounding each cation. This relaxation is crucial. If ignored, the energy of
exchange of any two ions is usually very high and all exchanges are rejected, thus sampling
only one arrangement. All the methods include vibrational effects and are applicable over
ranges of pressure and temperature. Disorder problems are often tackled by using a general
Ising model, simplified by limiting interactions to a short range and a finite number of multisite
couplings. Such an approach is awkward to parametrize for ionic solids, where relaxation is
crucial, and to apply over a range of pressures and temperatures. It is not readily generalized
to less symmetric structures, to which we also wish to apply the general methodology outlined
here. In our methodology, no assumptions are made as to the nature of the solid solution.

In particular, we have demonstrated how the rapid calculation of the free energy via
quasiharmonic lattice dynamics can be used to calculate thermodynamic properties of solutions
over wide ranges of pressure and temperature including�Hmix and �Smix, and phase diagrams.
Results compare well with those from Monte Carlo simulations in the semigrand canonical
ensemble, and the agreement is better at higher pressure where internuclear distances are
smaller and anharmonic contributions smaller. Quantum effects are included in the vibrational
contributions at low temperatures. Calculated entropies of mixing include both configurational
and vibrational contributions. For the latter we have seen when extrapolation from the
point defect limit fails. The technique is limited only by the accuracy of the quasiharmonic
approximation, which breaks down with increasing amplitude of vibration and hence at high T ,
typically around two thirds of the melting point for oxides. Randomly generated configurations
have been sufficient for the properties considered in this paper. Use of space group information
is of course essential for finding the number of all symmetrically equivalent configurations to
one configuration which will be essential for more non-ideal solutions than that considered
here. Since different configurations may have the same space group symmetry but very different
energies, in our method we still need to optimize every configuration in turn to establish whether
a newly generated configuration has already been optimized. Different configurations can be
compared rapidly by computing their RDF. The RDF method is not exact since there may be
symmetrically non-equivalent configurations with the same RDF. However, in the example
here this leads to only very small inaccuracies in the thermodynamic averages. Overall the
striking success of the RDF method is very encouraging.

The Monte Carlo and the configurational averaging methods each have their own strengths
and advantages. Monte Carlo techniques are applicable to the solid at high temperatures and to
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melts [20]. The semigrand canonical ensemble is an attractive route to differences in chemical
potential and consequent calculation of the free energy and the phase diagram. Further work
is in progress to develop all of the methods and apply them to more complicated systems,
including much more complex mineral structures such as garnets and also highly non-ideal
examples, such as oxygen-deficient perovksites [32].
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