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Thermal expansion of polymers: Mechanisms in orthorhombic polyethylene

J. A. O. Bruno,* N. L. Allan, T. H. K. Barron, and A. D. Turner
School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom

~Received 13 March 1998!

Quasiharmonic lattice dynamics is used to examine the mechanisms underlying the anisotropic thermal
expansion of orthorhombic polyethylene, with particular attention to low temperature behavior. Several sets of
interatomic potentials all give good qualitative agreement with experiment. Tensions caused by vibrations with
components away from the bond directions are responsible for the negative expansion along the polymer
chains, and contribute significantly to the expansion perpendicular to the chains; associated torques on the
bonds have only a small effect, except at very low temperatures. The anisotropy of the expansion perpendicular
to the chains results from a subtle interplay of thermal stress and elasticity. The results suggest that this
anisotropy will be greatly reduced or even reversed at low temperatures.@S0163-1829~98!06437-6#
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I. INTRODUCTION

In principle, the thermal expansion of simple solids
well understood.1 It is driven predominantly by the effect o
vibrations on central force interactions between neighbor
atoms. Such models can account, for example, for the n
tive expansion observed at low temperatures in many te
hedrally bonded crystals. Other crystals, however, sh
more complex behavior. This may be due to intricate el
tronic behavior, as in some magnetic and heavy fermion
ids, but may also be due to the complexity of the crys
structure and bonding, and sometimes to disorder. Polym
materials are a case in point, presenting formidable probl
for the theorist, owing to their long chain structure and t
consequent need for an accurate representation of the i
play of both the weak intermolecular and strong intramole
lar forces. In addition, many polymeric materials are se
crystalline, making it difficult, if not impossible, to obtai
reliable estimates of ideal crystalline behavior from expe
ment.

In the present paper we continue a systematic theore
study of mechanisms underlying the thermal expansion
crystalline polymers, which has been under way in our gro
for some years. In this work the internal expansion~rear-
rangement of atoms within the unit cell! is treated simulta-
neously and on the same footing as the macrosco
expansion.1,2 After summarizing the conclusions reach
from the study of skeletal chain models,3–5 we study severa
models and potentials for orthorhombic polyethylene~o-PE!,
with particular attention to the anisotropic thermal expans
at low and intermediate temperatures and the underly
mechanisms.

For this purpose it is efficient to use quasiharmonic latt
dynamics consistently in the first order approximation:
thermal expansion coefficients are calculated from anal
expressions, and evaluated at all temperatures for the ge
etry of the static lattice. This neglects all effects of high
order in the anharmonicity, including those due to the cha
of geometry with temperature. For a crystal as soft as po
ethylene this would be a serious drawback for quantita
studies at most temperatures, but it is efficient for investig
PRB 580163-1829/98/58~13!/8416~12!/$15.00
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ing mechanisms and is also quantitatively sound at su
ciently low temperatures.

We start in Sec. II by describing the crystal structure a
the coordinates used to describe its state of strain, toge
with available experimental data on thermal expansion. S
tion III gives the background theory, including that of centr
force mechanisms of thermal expansion, together with a b
account of computational details of particular interest. S
tion IV summarizes earlier conclusions from skeletal ch
models, before our present results for the expansion co
cients and Gru¨neisen functions of polyethylene are given
Sec. V. These include the contributions from differe
mechanisms, zero-point energy effects and behavior at
temperatures. Final remarks are in Sec. VI.

II. CRYSTAL STRUCTURE AND THERMAL EXPANSION

The orthorhombic unit cell is shown in Fig. 1. This prim
tive cell contains twelve atoms which belong to tw
conformationally-equivalent chains. The space group
Pnam.6 There are nine structural parameters: the lattice
rametersa, b, andc, and six internal coordinateswm(m51
•••6) which determine the positions of all the atoms in fra

FIG. 1. Unit cell of ideal orthorhombic polyethylene
a57.121 Å, b54.851 Å, c52.548 Å ~Ref. 7!. Atoms colored
black are at height14 c, empty circles denote a height of2

1
4 c. Large

circles denote C atoms, small circles denote H atoms. Dashed
show the H•••H intermolecular interactions considered, labelled
increasing distance:~1! 2.5349 Å,~2! 2.6330 Å,~3! 2.6597 Å, and
~4! 2.8858 Å. Dotted lines show the C•••H interactions:~5! 3.1789
Å and ~6! 3.3605 Å.
8416 © 1998 The American Physical Society
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PRB 58 8417THERMAL EXPANSION OF POLYMERS: MECHANISMS . . .
tional coordinates, as listed in Table I. We have taken
lattice parameters, measured at 4 K, from Ref. 7.

These nine parameters are convenient for the theor
internal expansion when developing algebraic express
for use in computer codes, but for discussing the phys
significance of the results we use equivalent sets with m
roscopic strainsha5d lna, hb5d lnb, hc5d lnc, and internal
strains related directly to changes in distances between m
atomic positions and to changes in various angles determ
by these positions, including the ‘‘setting angle’’â which
the plane of a carbon chain makes with theac-plane. Results
obtained with different sets are related to each other by lin
transformations.

The thermal expansion is highly anisotropic. The carb
chains run continuously in thec direction, and the coefficien
of expansionac is negative. The expansion coefficientsaa
and ab perpendicular to the chains are positive, and lar
than ac by an order of magnitude or more. There is a le
marked anisotropy in theab-plane, withaa.ab down to at
least 100 K. At lower temperatures x-ray diffraction8,9 be-
comes insufficiently sensitive for expansion data~see Fig. 4
of Ref. 9!. Much more precise dilatometric measureme
can be made on bulk samples, with results extrapolate
100% crystallinity.10,11 Isotropic material10,12 then gives a
single coefficientapoly . Drawn material12 gives two, a i
along the draw direction anda' perpendicular to it; these ar
approximately equal toac and (aa1ab)/2, leaving undeter-
mined the anisotropy in theab plane at low temperatures
Accuracy obtainable by different experimental methods
reviewed in a recent handbook.13

III. THEORY

A. Quasiharmonic approximation

The effective potential energyF governing the lattice vi-
brations, as given for example by the Born-Oppenheimer
proximation, is a function of the positions of the atoms, a
can be expanded as a Taylor series in the displacemen
the atoms from their mean positions:

F5F01F11F21F31F41•••, ~1!

whereF0[Fstat is the static lattice energy andFn denotes
the term of ordern in the displacements. In computation
the coefficients occurring in theFn may be the input data
defining a model, they may be derived from pair potentials
more general valence force-fields, or they may be obtai

TABLE I. Arrangement of atoms in the unit cell of o-PE.w1

50.044183, w250.059859, w350.186360, w450.011509, w5

50.027079, andw650.277646.

Atoms Fractional coordinates

C 6(w1 ,w2 , 1
4 )

H 6(w3 ,w4 , 1
4 )

H 6(w5 ,w6 , 1
4 )

C 6( 1
2 2w1 , 1

2 1w2 ,2 1
4 )

H 6( 1
2 2w3 , 1

2 1w4 ,2 1
4 )

H 6( 1
2 2w5 , 1

2 1w6 ,2 1
4 )
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from ab initio calculations. When a crystal structure has
internal degrees of freedom, the mean position of each a
is determined by symmetry andF1 vanishes. When this is
not so, a model in any state of internal strain can be ma
tained in equilibrium by applying appropriate intern
stresses.

The harmonic approximation of lattice dynamics assum
that the amplitude of vibrations is sufficiently small for th
anharmonic termsF3 and beyond to be neglected. The v
brational motion is then a superposition of independent h
monic modes. In a periodic structure each mode is labe
by its wave vectorq and polarizations. For each wave vecto
the squares of the mode angular frequencies, (vqs)

2, with
their associated polarization vectors, are obtained as ei
values and eigenvectors of the Hermitiandynamical matrix
D„q…, which is derived in the usual way1,14 from the atomic
masses and the coefficients occurring in the quadratic f
F2 .

The total Helmholtz free energy,F, is the sum of static
and vibrational contributions:

F5Fstat1Fvib ~2!

where the harmonic approximation givesFvib as the sum of
independent contributions from all the normal modes:

Fvib5(
qs

H 1

2
\vqs1kTlnF12expS 2

\vqs

kT D G J . ~3!

The quasiharmonic approximationobtains the strain-
dependence ofFvib by applying the harmonic approximatio
afresh at each state of strain. The term ‘‘quasiharmonic’
used because for a truly harmonic crystal potential~with
Fn50 for n.2) the coefficients inF2 , and henceFvib ,
would be independent of strain.1 The approximation gives
the thermal expansion coefficient correct to the first orde
the anharmonicity of the potential~e.g., Ref. 15!. In the
present work, we keep consistently to this order of appro
mation, neglecting higher order effects; in particular w
evaluate all quantities at the equilibrium geometry
the static lattice.16 Quantities are thus calculated as a fun
tion of temperature at constant strain, both internal and
ternal. They should be close to constant pressure quantiti
low temperatures, diverging at higher temperatures.

B. Thermodynamics of internal strain: the general regime

Through the frequencies,Fvib is a function both of exter-
nal strain coordinateshl and of internal coordinatesek .
Since crystal symmetry is preserved in thermal expansio
is not necessary to consider all possible strains, but only a
of nine independent coordinates as described in Sec. II
lattice dynamics it is convenient to treat all these strains
multaneously, as thermodynamic variables in the so-ca
‘‘general regime.’’2

Together thehl and theek comprise the set of genera
ized coordinatesEA . The stressesTA thermodynamically
conjugate to theEA are then

TA5
1

V°
S ]F

]EA
D
E 8,T

, ~4!
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whereV° is the volume of the reference configuration and
is independent of strain. The isothermal elastic stiffnes
follow by taking second order derivatives ofF:

C ab
T 5S ]TA

]EB
D
E 8,T

5
1

V°
S ]2F

]EA]EB
D
E 8,T

. ~5!

The second order compliances

S AB
T 5S ]EA

]TB
D
T 8,T

~6!

are then found by inverting the entire stiffness matrixC AB
T .

The heat capacity at constant macroscopic and inte
strain is

CE52TS ]2F

]T2D
E

~7!

and the thermodynamic Gru¨neisen functionsGA(T) are pro-
portional to the thermal stress coefficients:

GA~T!52
V

CE
S ]TA

]T D
E
. ~8!

The thermal expansion coefficients are given by

AA52(
B
S AB

T S ]TB

]T D
E
5

CE
V (

B
S AB

T GB~T!. ~9!

They thus depend on the interplay of compliances and t
mal stress coefficients, as discussed by Munn.17

Thermodynamically, Eqs.~4!–~9! are exact. But when the
quasiharmonic approximation is used forFvib and its deriva-
tives, the vibrational contributions to the stressesTB and the
consequent contributions toAA are correct only to the firs
order in the anharmonicity. Since the variation of elas
compliances with temperature is itself an anharmonic eff
we keep consistently to the lowest order in the anharmoni
by using the static lattice compliances in evaluatingAA :

AA5
1

V°
(
B
S AB

stat(
qs

GB~q,s!cS \vqs

kT D , ~10!

wherec(\v/kT) is the heat capacity of a harmonic oscill
tor with frequencyv, andGB is a mode Gru¨neisen paramete
in this regime, defined by

GB~q,s!52F] lnvqs

]EB
G
E 8

. ~11!

In the computation, mode gammas are obtained from st
derivatives of the eigenvalues. These derivatives are
tained by first order perturbation theory.1,18,19

C. Derivation of macroscopic properties

We use a different script to denote variables in themac-
roscopic regimeof thermodynamics, which considers on
external degrees of freedomhl , with conjugate stressestl ,
o
s

al

r-

c
t,
ty

in
b-

expansion coefficientsal , stiffnessesClm , etc. The defini-
tions of these functions are analogous to those for the gen
regime; e.g.,

tl5
1

V°
S ]F

]hl
D

h8,T

, al5S ]hl

]T D
t

. ~12!

To relate macroscopic functions to those computed in
general regime, we remember that in macroscopic exp
ments the internal coordinates adjust to give minimum f
energy, corresponding in the general regime to a conditio
constant~zero! internal stress. We can therefore immediate
identify the expansion coefficientsAl in the general regime
with the macroscopic coefficientsal , since both correspond
to conditions of constant internal and external stress. For
same reason, the macroscopic compliance matrixSlm

T is the
same as the submatrixSlm

T of S AB
T . In contrast, the stiffness

submatrixC lm
T does not give the macroscopic stiffnesse

because it refers to conditions of constant internal str
~rather than constant internal stress!; instead, theClm

T are
obtained by inverting theSlm

T matrix. Similarly, the macro-
scopic Gru¨neisen functions,gl , which are often used in the
analysis of thermal expansion data, are defined by

gl52
V

Ch
S ]tl

]T D
h

. ~13!

The gl allow for the relaxation of internal degrees of fre
dom, and so differ from theGl of the general regime.2 To the
present first order accuracy they are given by

gl5Gl2(
k,m

GkSkm
statCml

stat, ~14!

whereSkm
stat is the inverse of the internal submatrixC km

statof the
matrix C AB

stat. We also note in passing that the heat capac
given by the sum of harmonic mode contributions is notCh
but CE ; if required, it can be converted thermodynamica
to the macroscopic propertiesCh andCP .1,2

D. Integration grids

To evaluate thermodynamic properties, expressions
volving the normal mode frequencies and their strain deri
tives are integrated over the first Brillouin zone~FBZ!. For
o-PE the FBZ is rectangular, and symmetry enables us
restrict the numerical integration to the positive quadra
Fine meshes were used to obtain high accuracy, and als
test the reliability of results from coarser meshes. For test
two different types of meshes were employed, both obtai
by dividing reciprocal space into cells similar in shape to t
Brillouin zone but smaller in linear dimensions by a fact
1/m. One mesh comprised the cell centers~the Monkhorst-
Pack mesh20!; the other comprised the cell corners, exce
that theG point was omitted because it is a singular point f
the Grüneisen parameters of acoustic modes.

For each mesh an iterative procedure was used to ex
the accuracy of the integration to very low temperatur
where only low-frequency acoustic modes withq vectors
lying close to theG point contribute to the thermodynami
properties.5,19 In the first step the integration over the inn
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TABLE II. Values of gb andgc for VFF2 at 1.0 K and at 100 K, obtained with varying mesh size in
FBZ for two different types of mesh. Faster convergence is obtained by combining them in accordanc
Simpson’s rule.

gb

T51.0 K T5100.0 K
Mesh Center Corner Simpson’s rule Center Corner Simpson’s ru

4 3.080 3.109 3.090 1.229 1.489 1.316
8 2.896 3.181 2.991 1.188 1.362 1.246
16 2.850 3.060 2.920 1.215 1.275 1.235
32 2.863 2.961 2.896 1.235 1.245 1.238
48 2.883 2.926 2.897 1.239 1.241 1.240
64 2.893 2.913 2.900 1.240 1.240 1.240

gc

T51.0 K T5100.0 K
Mesh Center Corner Simpson’s rule Center Corner Simpson’s ru

4 220.34 25.992 215.56 22.328 21.601 22.086
8 216.50 211.87 214.96 21.603 21.978 21.728
16 215.71 214.05 215.16 21.665 21.793 21.708
32 215.24 214.84 215.11 21.707 21.729 21.714
48 215.10 215.00 215.07 21.715 21.720 21.717
64 215.06 215.04 215.05 21.717 21.718 21.717
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region with linear dimensions half that of the full zone
recalculated with a finer mesh employing the same num
of points as that used originally for the full zone. In the ne
iteration the inner region of the first inner region is treat
similarly, and so on until satisfactory convergence is o
tained after three to six steps. The procedure had no sig
cant effect on the results at temperatures above about 1
but was essential in the range down to 0.4 K, even for a m
with m564.

Convergence with increasing value ofm proved slow for
some of the quantities calculated, especially at low temp
tures; and most of the final results were obtained from
Monkhorst-Pack mesh withm564, giving a density of
262 144 points per zone~and much higher in the inner re
gions!. Even so, for some quantities full convergence w
not achieved, and for them a simple scheme based on S
pson’s rule was applied. This will be described in more de
elsewhere.21 Examples of the degree of convergen
achieved with different meshes are given in Table II for t
macroscopic Gru¨neisen functionsgb andgc .

E. Central force mechanisms for thermal stress

So far the theory given above applies to any type of cr
tal potential. This section considers specifically the action
pair potentials. The net thermal expansion of a crystal is
elastic response to the total thermal stress, and there are
eral ways in which thermal stresses arise in a central fo
model.

Bond-stretching effect.The most common intuitive ex
planation for thermal expansion is that atoms need m
room in which to vibrate at higher temperatures. This cru
oversimplification can be made more precise by conside
the typical form of the interatomic potential~Fig. 2!. The
asymmetry of the form of the potential leads to an incre
er
t
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of the mean interatomic distance with increasing amplitu
of vibrations. An equivalent argument is to consider t
mean interatomic distance held constant; as also illustrate
Fig. 2, the vibrations give rise to a time averaged force
tween the atoms which tends to increase the interatomic
tance, and the thermal expansion is the elastic respons
this force. This ‘‘bond-stretching’’ effect is dominant in th
~positive! thermal expansion of many solids.

Tension effects.When the vibration includes componen
of relative motion perpendicular to the bond, the mean int
atomic distance is greater than the distance between
mean atomic positions; the resulting increase in bond ten
causes a thermal stress tending to contract the bond an
restore the mean interatomic distance to its equilibrium va
~Fig. 3!. When the relative motion also has a compone
along the bond, there is in addition a net torque tending

FIG. 2. Vibrational displacements along the internuclear dir
tion between two atoms, which interact via an anharmonic p
potential, produce a mean repulsive force. Positions connecte
the dashed line represent the amplitude of motion of atom B w
respect to atom A.
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8420 PRB 58BRUNO, ALLAN, BARRON, AND TURNER
rotate the direction of the bond away from the direction
the relative motion22 ~Fig. 4!. Different vibrational modes
tend to rotate the bond in different directions, and in cu
crystals the net effect is zero; but it is not zero for bonds
crystals of lower symmetry such as o-PE.

The contributions of each of these mechanisms to
strain derivatives of the dynamical matrixD„q… can be easily
identified. Each potentialf(r ) between two atoms separate
by a vectorr contributes linearly to the elements ofD„q…,
with terms proportional to the derivatives

]2f

]r a]r b
5S f92

f8

r D cacb1
f8

r
dab , ~15!

whereca5r a /r and cb5r b /r are the direction cosines o
the bond. When the crystal is subject to a perturbing strair
may change in both length and direction:

r→r 1Dr , cacb→cacb1D~cacb!.

The consequent perturbation inD„q… thus contains a contri
bution proportional to

DS ]2f

]r a]r b
D5~Df9!cacb1DS f8

r D ~dab2cacb!

1S f92
f8

r DD~cacb!, ~16!

FIG. 3. Vibrational displacements perpendicular to the bond
rection produce a mean attractive force. Positions connected b
dashed line represent the amplitude of motion of atom B with
spect to atom A.

FIG. 4. Vibrational displacements with components both alo
and perpendicular to the bond direction produce a mean torqu
the bond in addition to the forces shown in Figs. 2 and 3. Positi
connected by the dashed line represent the amplitude of motio
atom B with respect to atom A.
f

c
n

e

where the terms on the right-hand side~RHS! are due respec
tively to changes in the pair force constant, in the tensi
and in the bond direction. The corresponding terms in
third order derivatives occurring in the perturbation mat
D8„q… are

]

]r g
S ]2f

]r a]r b
D5~rf-!

r ar br g

r 4
1S f92

f8

r D
3S r gdab2

r ar br g

r 2 D 1S f92
f8

r D
3S r adbg1r bdag2

2r ar br g

r 2 D , ~17!

where the terms on the RHS are, respectively, the b
stretching, nonrotational tension, and rotational tension c
tributions. We can therefore readily study the relative imp
tance of the different effects.

F. Analysis of internal adjustments within the unit cell

In some crystal structures the readjustment of atomic
sitions within the unit cell has a major effect on the mac
scopic thermal expansion. A striking example is provided
a quartz, where the ability of the SiO4 tetrahedra to rotate
easily gives rise to positive thermal expansion, whereas
other silica structures without this ability the expansion
negative.

With an appropriate choice of internal strain coordina
the present analysis permits the study of such effects;
only does it reveal how the coordinates change with temp
ture, but also by constraining one or more of them to rem
constant we can study the effect of their relaxation on
temperature dependence of other strains. Theoretically, s
‘‘clamping’’ reduces the number of active strains an
stresses,EA and TA , but does not change the values of t
thermal stress coefficients, Gru¨neisen functions and elasti
stiffnessesCAB for those that remain. The new complianc
SAB are obtained by inverting the matrixCAB for the clamped
crystal, which is simply a submatrix of that for th
unclamped crystal; and the remaining properties follow
described earlier.

IV. CONCLUSIONS FROM SKELETAL CHAIN MODELS

We summarize here conclusions reached previously
this laboratory from studying a series of central-force sk
etal chain models of increasing complexity.3–5 Properties of
the models were evaluated at a fixed geometry~static equi-
librium!. Short-range pair potentialsf(r ) were used, with

i-
he
-

g
on
s
of

FIG. 5. Three types of ‘‘struts’’~C- - -C, C- - -H, H- - -H!
between next-nearest neighbors used to simulate three-body a
forces. Filled circles: C atoms; empty circles: H atoms.
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TABLE III. Parameter listings. For intramolecular pair potentials, including struts,rf-/f9 was set to
221 ~the value given by a 6–12 potential whenf850), except that for VFF2 they came from the Mors
potential in GULP~Ref. 26! and for VFF4fs-50.25 fs-

VFF2 . All intramolecular potentials were fitted to

Buckingham form, except for VFF4 wheref-@H•••H (3) and (4)#51.25f-VFF2 and bothf-@C•••H#

50.50f-VFF2. For all interactionsf8 was put equal to zero.

Strut model force-fields (N m21)
Type BRC BT VFF1 VFF2 VFF4

C—C bond: f9 400.00 400.00 220.704 208.155 208.155
f- 28400.00 28400.00 24634.784 23193.816 23193.816

C—H bond: f9 400.00 400.00 220.704 208.055 208.055
f- 28400.00 28400.00 24634.784 22260.558 22260.558

C- - -C strut: f9 100.00 100.00 150.425 102.379 102.379
f- 22100.00 22100.00 23158.925 22149.959 2537.490

C- - -H strut: f9 100.00 100.00 127.813 103.577 103.577
f- 22100.00 22100.00 22684.073 22175.117 2543.779

H- - -H strut: f9 100.00 100.00 126.342 101.243 101.243
f- 22100.00 22100.00 22653.182 22126.103 2531.526

H•••H ~1!:a f9 1.000 0.413 0.413 0.484 0.484
f- 221.000 25.264 25.264 25.595 25.595

H•••H ~2!:a f9 1.000 0.432 0.432 0.509 0.509
f- 221.000 25.476 25.476 25.832 25.832

H•••H ~3!:a f9 1.000 0.201 0.201 0.212 0.212
f- 221.000 22.834 22.834 22.864 23.580

H•••H ~4!:a f9 1.000 0.806 0.806 1.008 1.008
f- 221.000 29.373 29.373 210.305 212.884

C•••H ~5!:a f9 0.273 0.273 0.291 0.291
f- 25.410 25.410 24.301 22.151

C•••H ~6!:a f9 0.122 0.122 0.142 0.142
f- 22.974 22.974 22.428 21.214

Torsion CCCC:b t 4.700 4.700 4.700 4.700

aLabeling as in Fig. 1.
bFrom Ref. 24, by Eq.~19!.
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f850 and rf-5221f9 as at the minimum of the 6–1
potential

f~r !5e0$22~r /r 0!61~r /r 0!12%. ~18!

Thus f9 was the variable parameter specifying the inter
tion between a pair of atoms. Intramolecular potentials w
taken between successive atoms in the chains~bond: fb),
and between next-nearest successive atoms in zigzag c
~strut: fs). A much weaker potential was taken betwe
nearest neighbors in adjacent chains~interchain: f i), and
most of the models were constructed so that all interac
pairs of atoms in different chains were at the same dista
apart. The axisOz was taken along the chain direction, an
for crystals of parallel zigzag chainsOy was perpendicular
to the molecular plane. The models had orthorhombic,
tragonal or trigonal symmetry. All of the cross-complianc
S23, S13, S12 were negative, giving positive Poisson’s ratio

The first models studied consist of parallel linear chai
They are easily compressible in thexy plane, withS11, S22,
S12 large, and incompressible alongOz, with S33, S13, S23
very small. Vibrations polarized along the chain lengths
mostly of high frequency, of small amplitude and not excit
at low and intermediate temperatures. The amplitude of
excited atomic vibrations is therefore mainly perpendicu
-
e
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-
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e
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to the chains, so that the thermal expansion in the ch
direction is dominated by tension effects and is small a
negative. In contrast, the much weaker interchain inter
tions give rise both to positive bond stretching and to ne
tive tension effects, which depend on the angles made w
the polarization directions for each vibrational mode. Bo
effects are appreciable, but the bond-stretching effec
greater, resulting in a large approximately isotropic exp
sion perpendicular to the chains.

Crystals of parallel planar zigzag chains behave diff
ently. In the absence of struts (fs50) the chains are flex-
ible, and stress along the chain can be largely relaxed
changing the CCC angle, affecting both the elasticity and
thermal stress; the crystals are no longer incompress
along Oz, and the final macroscopic thermal stress is
longer strongly anisotropic. Results depend on details of
geometry. For a chain angle of 90° the thermal stress
almost isotropic, andS115S225S33; but a very strongly
negative cross-complianceS13 in the plane of the molecula
chains lowers the expansion in directionsOx andOz parallel
to the molecular planes below that in the perpendicular
rectionOy. For a different geometry with a tetrahedral cha
angle, there is greater anisotropy in both thermal stress
elasticity; the expansion coefficients are still all positiv
with ay greatest; butaz is now much smaller thanax .
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When the chains are stiffened by struts between sec
neighbors, stresses along the chain direction can no longe
relaxed easily by internal rearrangement. Negative expan
along the chain direction is restored, andS13 is small again.
Thermal expansion remains greatest in the direction perp
dicular to the molecular chains except at very low tempe
tures.

The final skeletal models examined approach m
closely the geometry of polyethylene. All chains run in t
same directionOz, but the molecular planes are no longer
parallel but made alternately anglesâ and 2â to the Oxz
plane. For all these models the expansion is small and n
tive along the chain direction and large and positive in p
pendicular directions, but the anisotropy in theOxy plane is
model dependent. A geometry based roughly on polyeth
ene, withâ542° and a tetrahedral bond angle, gives a m
erate anisotropy withab.aa ~opposite to that observed ex
perimentally!; but with a bond angle of 90° the expansion
the Oxy plane is virtually isotropic.

Thus for all the skeletal models the tension effect, d
primarily to vibrations perpendicular to the polymer plane
is responsible for negative expansion in the chain direct
but expansion perpendicular to the chains is due to a com
nation of both bond stretching and tension effects, and
anisotropy is strongly model dependent. We shall see
this remains true for models of polyethylene, although
addition of H atoms changes the detailed behavior, includ
the nature of the anisotropy in theab plane.

V. MODELS FOR POLYETHYLENE

The models used here for polyethylene are develo
from those described above for skeletal polymers. Intram
lecular pair potentials are now required for C—H bonds
addition to the C—C bonds, and for C- - -H and H- - -
‘‘struts’’ in addition to the C- - -C struts, so as to stiffen th
all the tetrahedral angles at each carbon~Fig. 5!. Intermo-
lecular pair potentials are taken between all pairs of hyd
gen atoms H•••H less than 3 Å apart, and for most of the
models also between carbon and hydrogen atoms C•••H less
than 4 Å apart. Most of the models include a harmonic
tramolecular torsional potential for each sequence of f
carbon atoms in the chains, of the for
t(h12h22h31h4)2/2, where hn is the displacement o
atomn normal to the skeletal plane.

Because we are using the first order approximation
evaluating the thermal expansion coefficients for the geo
etry of the static lattice, the pair potentials of the models
completely specified by giving the values off8, f9, andf-
for each pair of interacting atoms~Table III!, together with
that of the torsional constantt. We shall give the reasons fo
the choice of these models, by explaining their relation
others in the literature.

We start with the simplified model described in Ref.
which has no C•••H interactions and has the same forc
constants for all H•••H pairs less than 3 Å apart. It has als
no torsional force constants, so that restoring forces for
sional oscillations are due solely to the H•••H interactions.
Rounded values are taken for thef9, based on published
valence force fields, and againrf-5221f9. Unfortu-
nately, the results for the expansion coefficients in Ref
nd
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were incorrect, due to a small programming error. Correc
results for this model~hereafter referred to as model BRC!
give much poorer quantitative agreement with experim
~see Fig. 6! than reported in Ref. 5, although the qualitati
agreement with experiment remains encouraging, includ
the anisotropy perpendicular to the chains.

We therefore make a number of simultaneous refineme

FIG. 6. Macroscopic thermal expansion as a function of te
perature. – –, BRC;•••, BT; 2•2, VFF2; —, VFF4. Expt.:j,
Ref. 9; h, Ref. 12.
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TABLE IV. Calculated elastic stiffnesses~GPa!.

BRC BT VFF1 VFF2 / VFF4 Ref. 28 Ref. 30 Expt

C11 12.32 6.35 6.34 7.33 12.6 7.99 11.5a

C12 6.18 3.44 3.43 3.92 6.5 3.28
C13 4.09 2.21 2.06 2.39 2.1 1.13
C22 12.72 8.24 8.24 9.89 12.4 9.92
C23 5.28 3.42 3.20 3.85 4.3 2.14
C33 312 312 456 313 316 316 290b

C44 4.88 3.11 3.12 3.76 3.19
C55 4.74 2.08 2.08 2.33 1.62
C66 5.93 3.28 3.29 3.77 3.62

aAt 77 K, from Ref. 30.
bFrom Ref. 31.
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to the model: the 3 Å cutoff is retained for the H•••H in-
teractions, but they become a function of distance; and b
C•••H interactions~with a cutoff of 4 Å! and the torsional
potential are added. For simplicity we retain the zero val
for f8 for all pair interactions, but the value ofrf-/f9
varies.

We have investigated extensively the parametrization
the pair potentials in a series of models. For intramolecu
potentials, in addition to using the parameters of BRC~in
model BT!, we have tested parameters derived from
Urey-Bradley force field of Tashiroet al.23 ~in model UBFF!
and from three different valence force fields: one taken fr
Kobayashi and Tadokoro24 ~in model VFF1!; one developed
by us during this work~in model VFF2!; and one taken from
Hwang et al.25 ~in model VFF3!. We have converted the
force field parameters into force constants appropriate for
strut model, but it is important to note that this translation
not exact. Valence force fields have a greater numbe
second order force constants than the strut models, an
struts cannot reproduce all the features of a valence fo
field; while struts are fully adequate for keeping an an
rigid, they are not wholly satisfactory for describing prope
ties which depend on departures from rigidity. The torsio
force-constantt was obtained from the parametergt of
Kobayashi and Tadokoro24 by the transformation

t5gt /~Rsinu!2, ~19!

whereR is the C—C distance andu is the C—C—C angle.
For intermolecular potentials the same set of Buckingh

potentials, of the form

f~r !5Aexp~2r /r!2C/r 6 ~20!

was taken from Ref. 24 and used to derivef9 andf- values
for models BT, UBFF, VFF1, and VFF3; for VFF2 the po
tentials were determined by using the program GULP,26 with
the criterion that the calculated equilibrium structure in t
static limit reproduced closely the experimental structu
None of the models includes long-range Coulombic inter
tions — unlike, for example, that of Karasawaet al.27 Of
our models, BT, VFF1, VFF2, and a later modification VF
~see below! give the most satisfactory general agreem
with experiment. It is for these, together with BRC, that w
present results here; their potential parameters are liste
Table III.
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Because elasticity plays an important role in thermal
pansion, we list in Table IV the elastic stiffnesses in t
static limit for the five models. It is clear that they are
general comparable to those of previous work.

A. Zero-point dilation and macroscopic expansion coefficients

To estimate the zero-point dilation atT50 from static
lattice equilibrium geometry, we retain only the first term o
the RHS in Eq.~3!. Each mode contributes (\v/2) to the
zero-point energy, and so high frequency modes are imp
tant here; whereas only low frequency modes are therm
excited at low temperatures and so determine the subseq
expansion as the temperature is raised aboveT50. Table V
gives macroscopic dilations atT50 along thea, b, and c
axes for models BT, VFF1, VFF2, and VFF4, as calcula
from (\/2V)(BS AB

T (qsGB(q,s)vqs . All the dilations are
positive and bond-stretching modes dominate. The ma
tude of the dilations in thea, b, andc directions are given in
Table V; VFF4 is closest to the estimates of Lacks a
Rutledge.28

The macroscopic expansion coefficients computed for
BRC, BT, VFF2, and VFF4 potentials are compared w
experiment in Fig. 6 and for all five models at selected te
peratures in Table VI; also,a i and a' derived from mea-
surements on drawn samples are compared withac and
(aa1ab)/2 in Figs. 6~c! and 6~d!. Each model has the sam
qualitative agreement with experiment as obtain
previously,5 including the correct sign of the anisotropy
the ab plane.

The BT model gives better agreement with experim
than the BRC model, in two ways. First, there is much clo
agreement with experiment forac between 40 and 100 K
which is low enough for the lowest order quasiharmonic a

TABLE V. Macroscopic dilations~%! due to the inclusion of
zero-point effects.

Force fields
Strain BT VFF1 VFF2 VFF4 Ref. 28

ha 4.15 4.19 3.52 2.48 1.93
hb 2.91 3.07 2.50 1.78 1.48
hc 0.31 0.40 0.20 0.12 0.47
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TABLE VI. Macroscopic expansion coefficients (1026 K21) given by different force fields.

Force fields Experiment
T ~K! BRC BT VFF1 VFF2 VFF4 Ref. 8 Ref. 9 Ref. 12

aa 1 0.00185 0.00681 0.00679 0.00418 0.00320
10 1.89 5.95 5.50 3.56 2.79
20 16.18 31.71 30.49 21.09 16.50
40 83.46 93.74 91.07 66.40 53.02 0.53102

100 218.9 182.6 179.2 136.6 112.4 1.03102 1.03102

150 253.3 204.6 201.2 155.0 128.2 1.33102 1.23102

200 269.7 215.0 211.7 164.2 136.1 1.53102 1.43102

ab 1 0.00268 0.00440 0.00428 0.00230 0.00307
10 2.34 3.20 2.94 1.73 2.40
20 16.52 17.25 16.32 10.36 13.94
40 67.40 42.85 41.11 27.83 37.72
100 149.2 63.65 61.90 41.38 59.68 0.53102 0.63102

150 168.4 66.88 65.63 43.11 63.70 0.613102 0.63102

200 176.9 67.90 67.07 43.51 65.07 0.633102 0.63102

ac 1 20.00020 20.00096 20.00094 20.00066 20.00067
10 20.13 20.37 20.34 20.28 20.31 20.175
20 20.93 21.51 21.47 21.25 21.45 20.79
40 24.88 23.95 24.17 23.52 24.43 23.05
100 29.80 25.83 27.66 25.63 29.01 20.13102 26 26.0
150 29.00 24.55 27.57 24.59 29.71 20.13102 27 26.8
200 27.89 23.28 26.88 23.33 29.65 20.13102 28 28.0
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proximation to be fair. Secondly, the magnitudes ofaa and
ab are considerably smaller than for BRC.

VFF1 gives only a slight improvement on the results
BT, but VFF2 is distinctly better for bothac and (aa
1ab)/2. However, all the first four sets predict incorrect
that ac should decrease in magnitude above 100 K. This
due to the excitation of longitudinal compressive mod
along the chains, which contributes positively toac because
of the asymmetric C- - -C strut. The disagreement with
periment may of course be due to the neglect of higher o
anharmonic effects, but it suggests that a strut with the
harmonicity of a typical interatomic potential overestima
the anharmonicity of the valence bond angle.

We therefore developed model VFF4, which has the sa
harmonic force constants as VFF2 but has much less an
monicity in the struts~see Table III!; in addition, adjustments
have been made to the anharmonic parameters of some o
intermolecular interactions so as to give closer agreem
with the experimental anisotropy in theab plane. As ex-
pected, this removes the marked rise inac above 100 K; but
agreement is now poorer at low temperatures.

B. Mechanisms

The calculations reveal explicitly the separate contrib
tions from the tension mechanisms~Sec. III!. The BT, VFF1,
VFF2, and VFF4 models all lead to the same general c
clusions. Foraa , the negativenonrotational tension effect
are approximately in the range 10–25 % of thenet positive
values. The rotational tension contribution is apprecia
only at low temperatures, ranging from;10% of thenet
positive values below 10 K to,1% at 150 K. Forab the
nonrotational tension effect is relatively large, varying b
r
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tween 40 to 90% of thenetpositive value for BT, VFF1 and
VFF4, or 55 to 130% for VFF2. The rotational contributio
ranges from;15% below 10 K to;3% at 150 K for all
models. The net positive thermal expansion in theab plane
is due to the dominant bond-stretching effect, but the la
contributions of the tension effects are important in a
quantitative study. In particular, at low temperatures the
tational contributions toaa andab are of opposite sign, re
ducingaa and increasingab , thus having a marked effect o
the anisotropy in theab plane.

Conversely, there are large positive bond-stretching c
tributions to ac , which in magnitude range from 60%
~VFF1! up to 160%~BT and VFF2! of the net negative val-
ues at 150 K. We confirmed that this is due chiefly to t
anharmonicity of the C- - -C strut pair potential by exami
ing the effect of puttingf-50 in Eq. ~17! for each strut
potential in turn; whenf- was set to zero for the C- - -C
strut, the calculated values ofac no longer passed through
minimum with increasing temperature. In VFF4, which ha
low value of f- for the C- - -C strut, the bond-stretchin
contribution toac is only 4% at 150 K. The rotational ten
sion contribution toac is negligible at low temperatures, bu
above 100 K is of the order of 10% of the nonrotation
contribution, with opposite sign.

C. Internal expansion

Consider first the configuration of the individual molec
lar chains. The increasing amplitude of vibrations perp
dicular to the C—C bonds leads to a decrease in the dista
R between the mean positions of the carbon atoms, w
leaving the instantaneous C—C bond distances virtually
changed. The proportional decrease inR is larger than that of
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the c lattice parameter; this is as expected since, neglec
correlation between the motions of the atoms, we are con
ering the same amplitude of vibration perpendicular to
carbon chain andR is smaller thanc.

Because of this the contractions inR and c lead to an
increase of the apparent C—C—C angle with temperat
and a decrease in the width of the skeletal polymer ribb
Calculations altering in turn the anharmonicity of the i
tramolecular C—C bonds and C- - -C struts confirm that
former produces a larger change inaR than inac , while the
latter has the opposite effect. For the C—H bonds too,
tension nonrotational effect is predominant, leading to a c
traction of the distance between the mean C and H positi
Several interactions are responsible for the overall chang
the H—C—H angle, which decreases with temperature.

The setting angleâ determines the relative orientation o
neighboring chains, and its variation with temperature can
expected to affect the nature of the expansion perpendic
to the chain direction. For all our modelsâ decreases with
temperature over the whole range; for VFF2 the change
tween 0 and 300 K is about 0.5°. The effect of this molecu
rotation on the macroscopic expansion at 100 K is to dim
ish aa by about 2.5% and to enhanceab by about 6%.

FIG. 7. Macroscopic Gru¨neisen parameters as a function of te
perature.~a! ga : – –, BT; —, VFF4.gb : •••, BT; 2•2, VFF4.
~b! gc : – –, BT; —, VFF4.
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D. Grüneisen functions and parameters

Examples of the calculated temperature variation of
macroscopic Gru¨neisen functionsgl defined in Eq.~13! are
given in Fig. 7. For all our modelsga andgb are both posi-
tive and decrease with temperature;gc is large and negative
at low temperatures, becoming much smaller at high te
peratures. By the macroscopic analog of Eq.~9!, the expan-
sion coefficientsal are related to thegl through the com-
pliancesSlm :

al5
Ch

V (
m51

3

Slm
T gm . ~21!

When ga and gb are approximately equal, the anisotrop
aa.ab arises becauseS11.S22 ~see Table VII!. However,
the negative cross-complianceS12 causesgb to contribute
negatively toaa andga similarly to ab , and a comparatively
small change with temperature in the anisotropy of therm
stress in theab plane brings about a much greater change
the anisotropy of expansion; thus for VFF4 the expansion
almost isotropic asT→0, wherega /gb50.84. In contrast,
all contributions toac are negative; in VFF2ga and gb
together contribute 27% toac at 100 K.

E. Expansion at very low temperatures

As the temperature is lowered the contribution of high
frequency modes to the thermodynamic properties is p
gressively diminished, until finally the Debye elastic limit
reached. A close approach to the Debye limit is obser
only at very low temperatures. It can be analyzed by plott
al /T3 andgl againstT2, and extrapolating toT50. Even at
1 K there are appreciable differences from Debye valu
e.g., for VFF2,aa differs by 1%,ab by 2% andac by 4%.

We have already seen that the ratioaa /ab decreases with
temperature. To illustrate what happens at the lowest t
peratures, we scale the expansion coefficients by
temperature-dependent Brugger factor29 xCE /V to obtain di-
mensionless quantities of order unity. The most striki
change is observed for BRC, where the anisotropy in theab
plane is reversed below 20 K~Fig. 8!; but for all the models
the ratioaa /ab as T→0 falls to roughly half of its 100 K
value. Since the experimental value of this ratio at 100 K
about 2, this suggests that at low temperatures the expan
of o-PE in theab plane is almost isotropic, as predicted b
VFF4.

The values ofac at very low temperatures depend almo
entirely on the torsional oscillations of the carbon chain,
means of the nonrotational tension mechanism. For all m
els except BRC their magnitudes are well above the exp
mentala i ~Table VI!; the models thus overestimate the am
plitude of these vibrations, indicating that the combin
torsional and intermolecular potentials do not stiffen t
TABLE VII. Calculated elastic compliancesSlm , l51•••3, m51•••3 (1022 GPa21).

BRC BT VFF2/VFF4

10.74 25.199 20.053 20.36 28.470 20.052 17.32 26.847 20.048
25.199 10.44 20.108 28.470 15.71 20.112 26.847 12.86 20.106
20.053 20.108 0.323 20.052 20.112 0.323 20.048 20.106 0.321
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chain sufficiently. Since these vibrations also are import
for expansion in theab plane, this too will be overestimate
at low temperatures.

F. Polycrystalline behavior

An isotropic bulk crystalline polymer, with Gru¨neisen
function gpoly , consists of randomly oriented crystallites.
the thermal expansion of a single crystal is anisotropic,
strain and stress fields within a polycrystalline sample are
uniform, but depend on the morphology; and so the exp
sion coefficient of the sample cannot be calculated exa
from the single crystal properties. There are however t
classical approximations, due to Reuss and Voigt, wh
give upper and lower bounds for polycrystalline properties32

In the Reuss approximation, the isotropic stress of the bu
assumed to be uniform throughout the polycrystal, as i
fluid. For orthorhombic symmetry this leads to a coefficie
of linear expansion

apoly.
1
3 ~aa1ab1ac!5aReuss ~22!

and a Gru¨neisen function

gpoly.
gaxa

S1gbxb
S1gcxc

S

xa
S1xb

S1xc
S

5gReuss, ~23!

where thexl are linear compressibilities:xl5(m51
3 Slm .

Thus the Reuss approximation givesgpoly as an average o
ga , gb , and gc weighted by the corresponding adiaba
linear compressibilities, andapoly as one third of the volu-
metric expansion coefficient of a single crystal.

In the Voigt approximation it is the strain that is assum
to be uniform throughout the polycrystal, so that any isot
pic volume change in the bulk produces an isotropic volu
change in each crystallite. This leads to a thermal expan
coefficient which is an average ofaa ,ab ,ac weighted by
(C11

T 1C12
T 1C13

T ), etc., and a Gru¨neisen function that is an
arithmetic average:

gpoly.
1
3 ~ga1gb1gc!5gVoigt . ~24!

We note in passing that the expression for ‘‘gbulk’’ used for
comparison with polycrystalline data in Ref. 28 is equal
3gVoigt .

Figure 9 shows values ofgReuss(T) andgVoigt(T) for BT
and VFF4, together with estimated experimental values

FIG. 8. The variation ofalV/xCE with temperature for the
BRC model. —,aa ; – –, ab ; •••, ac .
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gpoly from Refs. 10 and 12. VFF1 and VFF2 give values f
gReussclose to BT and VFF4, respectively. Sincexa andxb
are much larger thanxc , gReussis dominated byga andgb ,
whereasgVoigt is influenced equally bygc . The actual poly-
crystalline value will lie somewhere between these two li
its, depending upon morphology. Our results agree with G
bons’s conclusion32 that gReuss is a closer estimate tha
gVoigt . At low temperatures Refs. 10 and 12 give simil
results forapoly , and so the disagreement between them
gpoly must be due to their choice and processing of ot
data. We have also comparedapoly directly with aReussand
aVoigt . Above about 50 K it is slightly belowaReuss for
VFF2 and VFF4; but at the lowest temperatures it falls w
below gReuss, though still well abovegVoigt . This is at least
partly because these models overestimate the low temp
ture expansion~see Sec. V E!.

The rotational tension effect is negligible ingReussat all
temperatures, but the nonrotational effect is important; e
in VFF2 it contributes negatively about 45% of the total
very low temperatures, falling to 35% above 100 K.

VI. FINAL REMARKS

We have shown how a simple atomistic model of po
ethylene can throw light on the mechanisms of such comp
processes as the anisotropic thermal expansion. Various
of potential parameters, obtained in different ways, lead
the following conclusions.

Tensions caused by vibrations with components aw
from the interaction directions are responsible for the ne
tive expansion along the polymer chains, and contribute
nificantly to the expansion perpendicular to the chains. A
sociated torques are unimportant, except at low temperat
where they have a marked effect on the anisotropy of exp
sion in theab-plane. This anisotropy results from a subt
interplay of thermal stress and elasticity and is highly mo
dependent; it is only slightly affected by the decrease of s
ting angle with temperature and by other internal adju
ments within the unit cell. Fine integration grids near t
zone center give precise results at low temperatures,
demonstrate the importance of testing models against
available experimental data in this region; it is also predic
that the anisotropy in theab plane at low temperatures wil
be much smaller than that measured by x-ray diffraction

FIG. 9. The variation of the polycrystalline averagegReuss~two
upper lines! andgVoigt ~two lower lines! with temperature.•••, BT;
—, VFF4. Experimental values ofgpoly , extrapolated to 100% crys
tallinity, are from Refs. 10 (n) and 12 (h).
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higher temperatures.T3 behavior is approached closely on
below 1 K.

This paper completes earlier work3–5 investigating
mechanisms of thermal expansion in simplified models
polymer crystals. The methods will now be applied to mo
realistic models of specific materials, with the aim of und
standing of how their macroscopic thermodynamic prop
ties are related to crystal structure and bonding. This w
will include applications to other polymeric systems, inclu
ing those where long-range forces are relevant and wh
there are more atoms in the unit cell; and also to other c
plex crystals, such as those possessing layered structur
full quasiharmonic treatment will be used, so taking acco
of the softening of crystal elasticity with increasing tempe
,
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f
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ture. This will be carried out using both the direct minimiz
tion of the Helmholtz free energy with respect to exter
and internal degrees of freedom,18 and the analytic method
for deriving crystal properties and investigating mechanis
used in the present work.
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