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Abstract
We show how Monte Carlo simulations with the explicit interchange of atoms
and the use of the semigrand-canonical ensemble, can be used to calculate phase
diagrams for alloys. We illustrate our approach with the system Pd/Rh using the
embedded atom method with potential parameters derived from ab initio density
functional calculations. Our techniques take full account of local structural
distortion, clustering and thermal effects.

1. Introduction

Solid solutions and phase stability present considerable challenges for theory. Energy
differences between different phases can be small and subtle ordering effects can often be
crucial in determining phase stability and thermodynamic and chemical properties. Disorder
has largely been investigated theoretically via point defect calculations (the dilute limit), or via
‘supercells’, introducing a superlattice of defects which extends throughout the macroscopic
crystal. The periodicity is then that of the particular superlattice chosen and convergence
towards properties of an isolated defect occurs as the superlattice spacing is increased. These
two methods are not readily extended to solid solutions, liquid phases or disordered systems
with a finite impurity or defect content far from the dilute limit. The ab initio calculation
of solid-state alloy phase diagrams has been largely based on generalized lattice-model
Hamiltonians (see, e.g. [1]) and the cluster variation method.

We are currently developing a series of new codes and methods, for metals [2] and
for ceramics [3, 4], to address such problems. A key feature of all of these is the need to
sample many different arrangements of atoms, allowing for the exchange of atoms located at
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crystallographically inequivalent positions. Any method must also take into account the local
environment of each ion and the local structural movements (relaxation), which accompany any
exchange of atoms and reduce considerably the energy associated with any such interchange.
Local effects due to clustering should not be averaged out. Methods should be readily
extendible to incorporate the effects of high pressure or thermal (vibrational) effects.

Our approach is illustrated using the system Pd/Rh, which has been shown experimentally
to have a miscibility gap, with a critical temperature of about 1200 K at x(Rh) ≈ 0.5 [5–7].
In a recent study Jacob et al [7] have reported positive excess enthalpies, free energies and
entropies of mixing at 1273 K. Metastable disordered Pd–Rh alloys are stable from ambient to
relatively high temperatures [6].

We work within the framework of the embedded atom method (EAM) [8–10]. A novel
feature of our use of this model is that interatomic potentials are obtained by fitting to
energy hypersurfaces obtained from ab initio density functional calculations (cf [11]). Such
a procedure is likely to be especially valuable for problems involving disordered systems and
mixtures where, due to local structural relaxation, interatomic distances may be substantially
different from those adopted in pure end members.

2. Theoretical methods

2.1. The embedded atom method

In the EAM [8–10], the static energy of the crystal may be written as

�stat =
∑

i

Fi(ρi) +
1

2

∑
i

∑
j

′φij (rij ) (1)

Primes on summations in this and subsequent equations indicate that terms with rij = 0 are
excluded. Fi(ρi) is negative and represents the energy of ‘embedding’ atom i in the electronic
density ρi created by all other atoms in the crystal, and φij is the core–core repulsion between
atoms i and j, assumed to depend only on the type of the atoms i and j and the distance between
them. The electron density ρi is assumed to be the sum of the electronic densities of all other
atoms at the nucleus of atom i:

ρi =
∑

j

′fj (rij ) (2)

where the electron density created by atom j at a distance rij , fj (rij ), is assumed to be isotropic
about atom j. As implemented here EAM includes certain many-body contributions to the
crystal energy while the computational effort is reduced by not including angular contributions
explicitly. The parameters within the model are obtained using an ab initio potential energy
hypersurfaces as described below.

2.2. Monte Carlo simulations

We use Monte Carlo exchange (MCX) simulations [12,13], in the NPT ensemble. In any step,
a random choice is made whether to attempt a random exchange between two atoms, a random
displacement of an ion, or a random change in the volume of the simulation box. To determine
whether any change is accepted or rejected, the usual Metropolis algorithm [14,15] is applied.
The maximum changes in the atomic displacements and the lattice parameters are governed
by the variables rmax and vmax, respectively. The magnitudes of these parameters are adjusted
automatically during the equilibration part of the simulation to maintain an acceptance/rejection
ratio of approximately 0.3. Most of the Monte Carlo calculations reported here used a cubic
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box containing 256 atoms (4 × 4 × 4 primitive cubic unit cells) and 5 × 107 data collection
steps, following initial equilibration of 1 × 107 steps. Runs with larger cells were carried out
in order to check convergence.

3. Results

3.1. Potential parametrization

We choose a simple form for the potential. For the electronic densities, the fj (equation (2)),
exponential functions are used:

fj (rij ) = Dj exp

(−rij

ζj

)
(3)

with different parameters Dj and ξj for each metal (j = Pd, Rh) and with a cut-off of 6 Å.
The embedding energy (equation (1)) is given by

Fj (ρj ) = −Cj
√

ρj (4)

with different parameters Cj again for Pd and Rh. The repulsive potential in equation (1) is
also given a simple form,

φij (rij ) = Aij exp

(−rij

σij

)
(5)

where Aij and σij are different for each type of interaction (Pd–Pd, Rh–Rh, Pd–Rh).
Thus, for each pure metal there are five parameters to be determined and the Pd–Rh

repulsive interaction requires a further two. One simplification is to put CRh = 1 without loss
of generality, since the energy of any configuration depends only on CRh

√
DRh.

We have obtained values for the remaining parameters by fitting to the results of ab initio
full-potential linearized augmented plane wave (FP-LAPW) calculations, using the generalized
gradient approximation (GGA) [16] as implemented in the WIEN97 code [17]. The LAPW
method divides the unit cell into nonoverlapping atomic spheres and an interstitial region.
The solutions to the Kohn–Sham equations [18] are expanded in a combined basis set of
LAPWs—a linear combination of radial functions multiplied by spherical harmonics inside
the atomic spheres, and plane waves in the interstitial region. The method is free of shape
approximations to the charge density or the potential. The calculations were non-spin-polarized
and the exchange-correlation contributions to the total energy were obtained within the GGA.
For integration in reciprocal space 5000 k-points over the entire Brillouin zone were used.
The muffin-tin radius for both Rh and Pd was set to 2.4 a.u. while the product of the muffin-
tin radius, RMT, and the maximum reciprocal space vector, kmax, was put equal to 10. The
maximum l value for the waves inside the atomic spheres, lmax, and the largest G in the charge
Fourier expansion, Gmax, were set to 12 and 24, respectively. The convergence criteria for the
SCF calculations was taken as 0.0001 in charge differences.

These first principles calculations were carried out for the following structures:

(a) pure Rh and Pd, both in the face centred cubic structure, and for values of the lattice
parameter a shown in figures 1(a) and (b);

(b) Rh3Pd as a simple cubic lattice with Rh atoms at (0, 1
2 , 1

2 ), ( 1
2 , 0, 1

2 ), ( 1
2 , 1

2 , 0), Pd atoms
at (0, 0, 0), and for the range of lattice parameter a shown in figure 1(c);

(c) RhPd3 with the same structure as Rh3Pd for the values of the lattice parameter a shown
in figure 1(d);
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(d) RhPd as a tetragonal lattice with Rh atoms at (0, 0, 0) and Pd atoms at ( 1
2 , 1

2 , 1
2 ). Each

(approximate) parabola for the configurations of RhPd shown in figure 2(a) corresponds,
from left to right, to values of c from 3.7 to 4.0 Å in steps of 0.1 Å. Within each parabola
the configurations shown correspond to values of a from 2.6 to 3.2 Å in steps of 0.2 Å;

(e) RhPd as a tetragonal lattice with Rh atoms at (0, 0, 0) and ( 1
2 , 1

2 , 1
4 ), and Pd atoms at

(0, 0, 1
2 ) and ( 1

2 , 1
2 , 3

4 ). The configurations shown in figure 2(b) correspond to values of c
from 7.4 to 7.8 Å in steps of 0.2 Å with values of a within each parabola from 2.6 to 3.2 Å,
again in steps of 0.2 Å. This corresponds to a supercell of the type described above in (d)
but with a pair of Rh and Pd atoms interchanged. It is introduced to allow the sampling
of configurations with less symmetry than that in (d).

As seen from figures 1 and 2 the energy hypersurface resulting from the adjusted potential
reproduces very well the ab initio results. All the potential parameters are collected together
in table 1.
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Figure 1. Energy vs lattice parameter for (a) Rh, (b) Pd, (c) Rh3Pd and (d) RhPd3 from the LAPW
calculations and the resulting EAM potential.
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Figure 1. (Continued)

3.2. Thermodynamics of mixing

We consider first the enthalpies of mixing, calculated via MCX simulations. Figure 3 shows
calculated values of �Hmix at 1273 K, together with experimental results from [6]. There
is at least qualitative agreement, although the experimental results are somewhat larger than
those obtained from the simulation, particularly for the 50/50 mixture. In this context it is
important to note that �Hmix is predicted to vary markedly with temperature as illustrated in
figure 4 for Pd0.5Rh0.5; there is a steady increase from 500 to 1400 K, over which range �Hmix

almost doubles. This figure also illustrates the rapid convergence of �Hmix with simulation
cell size for this system, justifying our choice of a simulation cell for most of the calculations
comprising 256 atoms.

Calculation of the free energy is less straightforward. Absolute magnitudes of this quantity
cannot be obtained readily from Monte Carlo calculations. However, the calculation of the
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Figure 2. Energy for a range of configurations of (a) tetragonal RhPd and (b) the tetragonal cell
with four atoms per unit cell (Rh2Pd2) described in the text, from LAPW calculations and the
resulting EAM potential. For the atomic coordinates see points (d) and (e) in the list in the text
for parts (a) and (b), respectively. Each configuration corresponds to different values of the lattice
parameters a and c, as explained in the text.

Table 1. The potential parameters, obtained by fitting to ab initio energy hypersurfaces, used in
this work.

i/j Aij (eV) σij (Å) Cj (eV) Dj ζ j (Å)

Rh 26 294.5 0.246 062 1.0 7119.18 0.373 618
Pd 129 054 0.208 140 0.757 357 1620.58 0.453 342
Rh–Pd 27 060.4 0.241 988 — — —

phase diagram requires free energy differences rather than absolute values, and here we have
resorted to novel Monte Carlo techniques used for liquids. We use semigrand-canonical
ensemble simulations [15, 19] to calculate the difference in chemical potential of Pd and Rh
atoms. In this method one species, B, is converted into another, A, and the resulting potential
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Figure 3. Enthalpies of mixing at 1273 K calculated using MCX (256-atom cell) compared with
the experimental data of Jacob et al [6] at the same temperature.

Figure 4. The temperature dependence of �Hmix (500–1400 K) calculated using the MCX method,
with 32-, 256- and 2048-atom cells for Pd0.5Rh0.5.

energy change �UB/A determined. This is related to the change in chemical potential �µB/A by

�µB/A = −kBT ln

〈
NB

NA + 1
exp

(−�UB/A

kBT

)〉
(6)

Each fifth step (on average) we evaluate the energy associated with the conversion of a randomly
chosen Rh atom to Pd, �URh/Pd, and as the simulation proceeds determine the average value
of the exponential in equation (6). Note that the change of Rh into Pd is only considered
but not actually performed—the configuration remains unchanged after evaluating �URh/Pd.
The remainder of the simulation is as for the MCX approach described above. We have
checked consistency in that, overall, identical results are obtained considering the reverse
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Figure 5. Variation of �µRh/Pd/kBT (=µPd − µRh) vs x(Rh) at 900, 1200 and 1400 K.

transformation, i.e. of a randomly chosen Pd to a Rh atom. Note that our approach differs
somewhat from the methods of Laradji et al [20] since the change of one atom into another
is only noted but not performed in our simulations; our implementation of the semigrand-
canonical ensemble is more in line with the treatment in [15].

We show the calculated variation of �µRh/Pd/kBT with x(Rh) at three temperatures
(at 900, 1200 and 1400 K), using a 256-atom cell for Pd1−xRhx , in figure 5. The existence
of a maximum and a minimum in a �µ(x) curve indicates two minima in �G(x) vs x and
thus a miscibility gap at that temperature. It is clear from the shapes of these curves that
900 K corresponds to a temperature below the consolute temperature, with the formation of
one- and two-phase regions at different compositions. The observed consolute temperature,
1200 K [5,7,21], is just below the calculated consolute temperature, as indicated by the shape
of the �µ(x) curve in which the stationary points evident at 900 K have almost disappeared.
At 1400 K they are not present and this is above the consolute temperature, indicating complete
miscibility and the formation of a single phase at all compositions.
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To calculate the phase diagram, the calculated values of �µ(xRh) are fitted to a cubic
polynomial in xRh:

�µ

kBT
= �µ0

kBT
+ ln

(
1 − x

x

)
+ bx + cx2 + dx3 (7)

where �µ0 is the standard chemical potential difference, and x = xRh. By integrating
equation (7) with respect to composition we obtain the variation of the free energy with x
at each temperature. The value of �µ0 obtained in the fitting is almost independent of the
temperature, varying from 168.0 kJ mol−1 at 900 K to 165.5 kJ mol−1 at 1400 K. Values of
�µ0/kBT , b, c and d at 900, 1200 and 1400 K are collected together in table 2.

In figure 6 we plot the calculated values of �Gmix vs xRh at 900 K, 1200 K and 1400 K,
respectively. This figure confirms that at 900 K, one- and two-phase regions are formed
at different compositions, and hence it corresponds to a temperature below the consolute
temperature, and the negative values of �Gmix over all compositions at 1400 K are consistent
with complete miscibility. Given curves such as those in figure 6, a straightforward common
tangent construction at each temperature yields the phase diagram given in figure 7. Overall, the
agreement with experiment is satisfactory given the relative crudity of the potential model. The
calculated phase diagram lies between those determined experimentally [6, 7, 22, 23], which
are also shown in figure 7. The region near xRh = 0.5 is rather flat, in apparent agreement
with the experimental data. The calculated phase diagram is symmetric about xRh = 0.5 with
consolute temperature ≈1300 K. We do not see the small asymmetry seen in [6, 22]. Note

Table 2. Values of �µ0/kBT , b, c and d (all dimensionless), as defined in equation (7), at T = 900,
1200 and 1400 K, obtained by fitting values of �µ/kBT calculated at a number of compositions.

T (K) �µ0/kBT b c d

900 22.451 −12.955 15.922 −10.651
1200 16.708 −8.089 7.697 −5.151
1400 14.222 −6.227 4.968 −3.324
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124 F M Marquez et al

0.0 0.2 0.4 0.6 0.8 1.0

800

900

1000

1100

1200

1300

1400

x(Rh)

T
 [

K
]

Figure 7. Calculated and experimental phase diagram for Rh/Pd. Our calculations: —— (binodal)
and · · · · · · (spinodal). Experiment: Shield and Williams [6] (•), Elliot [22] (- - - -), Jacob et al [7]
(——) and diagram obtained in [7] from the thermodynamic data of Myles [23] (— · —).
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Figure 8. Calculated entropies of mixing at 900, 1200 and 1400 K. The ideal entropy of mixing
(�Sideal) is also shown (- - - -).

that no constraints on the symmetry of the phase diagram are imposed in the calculations.
See [4, 13] for calculations on ceramic systems with asymmetric phase diagrams which are
reproduced using this approach.

A further advantage of using the semigrand-canonical ensemble is that it is also
straightforward to extract the spinodal, which defines the region where a single phase is
kinetically as well as thermodynamically unstable with respect to the formation of two separate
phases, from the positions of the maxima and minima in the �µMg/Mn curves in figure 5. The
calculated spinodal is also plotted in figure 7.

Finally, we determine entropies of mixing, �Smix, from our calculated values of �Hmix

and �Gmix. Figure 8 shows the resulting variation of �Smix with composition at 900, 1200
and 1400 K. For comparison, the ideal entropy of mixing (�Sideal) is also plotted. �Smix, like
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�Hmix, increases markedly with temperature. At 900 K, �Smix is less than the ideal value. At
1200 K, it is close to ideal and is larger than ideal at 1400 K. In this context, it is crucial to
realize that the calculated �Smix includes both configurational and vibrational terms, which
are often neglected. Our calculated entropy of mixing is appreciably smaller than that in [6],
by over 1.5 J mol−1 K−1 for the 50/50 mixture.

4. Conclusion

In this paper we have used ab initio density functional calculations to obtain a potential for
Pd–Rh mixtures and used semigrand-canonical ensemble simulations with these new potentials
to obtain the phase diagram which is in very good agreement with experiment. The key feature
of our Monte Carlo methods, which is applicable to any composition, is that it samples many
configurations, explicitly considering different arrangements of atoms, and allows for the local
structural relaxation surrounding each atom. This relaxation is crucial. If ignored, the energy
of exchange of two atoms is usually high and all exchanges are rejected, thus sampling only
one arrangement. Vibrational effects are included and the method can be used at any pressure
and temperature. Work is currently in progress to develop the methods further and to apply
them to more complex systems.
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