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For crystals in which relative positions of atoms within the unit cell are not wholly determined by
symmetry, a complete application of the quasiharmonic approximation requires the minimization of
the free energy with respect to both external~hl! and internal~ej ! strains. The zero static internal
stress approximation first minimizes the static lattice energy with respect to theej for each state of
external strain; the total free energy is then minimized only with respect to thehl . We show that
although this gives an incorrect internal strain, to the first order it gives the correct external strain
at each temperature; in principle, errors are thus of the same order as those due to the use of the
quasiharmonic approximation. In particular, recent calculations by Lacks@D. J. Lacks, J. Chem.
Phys.103, 5085~1995!# of the effect of deuteration on the molar volume of polyethylene are shown
by the present analysis to include indirectly the effect of vibrational stretching of the C–H~D! bonds,
and their reasonable agreement with room temperature measurements may after all not be fortuitous.
© 1996 American Institute of Physics.@S0021-9606~96!50442-3#
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I. INTRODUCTION

In harmonic lattice dynamics, the vibrational frequenc
of a solid are obtained by expanding the potential energ
a Taylor series in terms of the displacements of the at
from their reference sites, and then taking the normal m
frequencies given by the quadratic terms only. But beca
the potential energy of a solid is always anharmonic, th
frequencies vary with the choice of reference sites. Fo
perfect crystal, this choice depends upon the external~mac-
roscopic! state of strain of the crystal, and, unless determi
by symmetry, also on the relative positions of atoms wit
the primitive cell ~constituting the state of internal strain!.
The quasiharmonicapproximation takes the vibrational fre
energy of the crystal at each such state of strain to be th
a set of harmonic oscillators with these frequencies. It t
allows for the anharmonicity of the crystal potential ene
only through the strain dependence of the normal mode
quencies. Nevertheless, it can be shown that to the first o
in the anharmonicity this procedure gives the correct vib
tional contribution to the pressure, and hence the cor
thermal expansion~see, for example, Ref. 1!.

In a full application of the quasiharmonic approximatio
the free energy is minimized at each temperature with
spect to both external and internal strain. To reduce the c
putational effort required, a further approximation is som
times used in which the static lattice energy is minimiz
with respect to internal strain, so that the total free ene
has to be minimized only with respect to the exter
strain.2–7We call thisthe zero static internal stress approx
mation, abbreviated to ZSISA. In this paper we examine
validity. The impetus for this work stems from a recent pa
by Lacks,7 who used the approximation to calculate the
8300 J. Chem. Phys. 105 (18), 8 November 1996 0021-9606
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fect of deuteration on the molar volume of orthorhombic
polyethylene; he found isotopic effects in thea andb lattice
parameters to which the C–H/D stretching vibrations con-
tributed strongly. He argued that these were additional to the
already known effects due to the vibrational stretching of the
C–H/D bonds,8 because this stretching is an internal strain
and is therefore treated by ZSISA only in the static lattice
approximation; the internal vibrational stress is neglected.
We shall see, however, that this argument is incomplete. Us-
ing ZSISA corresponds to a state of the crystal in which not
only the internal stress but also the external stress is nonzero;
and it turns out that when both these stresses are taken into
account, to the first order there is no net effect on the exter-
nal strain. At high temperatures, or for large zero-point en-
ergy, ZSISA may entail errors of the same order as those
entailed by the quasiharmonic approximation.

II. FUNDAMENTAL THEORY

It is convenient to use thegeneral regime,9 in which
both internal and external strains are treated as thermody-
namic variables on the same footing. We denote the external
strain byh, comprising a set of coordinateshl ~with Greek
subscriptsl, m, etc.!, and the internal strain bye, comprising
a set of coordinatesej ~with Roman subscriptsj , k, etc.!.
Lattice dynamics gives the Helmholtz free energy as a func-
tion of these strains,

F~h,e,T!5Est~h,e!1Fvib~h,e,T!, ~2.1!

where st and vib denote static lattice and vibrational contri-
butions, respectively. Conjugate external and internal
stresses are then given by
/96/105(18)/8300/4/$10.00 © 1996 American Institute of Physics
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tl5
1

V S ]F

]hl
D

h8,e,T
5tl

st1tl
vib ;

~2.2!

t j5
1

V S ]F

]e j
D

h,e8,T
5t j

st1t j
vib ,

where the subscriptsh8 or e8 denote that all theh or e are
kept constant except for the differentiation variable. Wh
the crystal is in internal equilibrium thetj are all zero and
the tl are the macroscopic stresses. Otherwise, both exte
and internal stresses depend upon the coordinate system
sen to represent the internal strain~see Sec. III!.

At the true minimum of the free energy botht andt are
zero; in contrast, the state selected by ZSISA is given by
conditions

t j
st50, S ]F

]hm
D

h8,tst,T
50. ~2.3!

The first of these conditions shows that the internal stres
given byt j 5 t j

vib . The external stress must be derived fro
the second condition.

Before doing this we must first distinguish between ela
tic constants in different thermodynamic regimes. In the g
eral regime elastic constants are denoted by script capit9

The isothermal stiffnesses can be obtained by differentia
the computed free energy

C lm
T 5

1

V S ]2F

]hl]hm
D

h8,e,T
; C lk

T 5
1

V S ]2F

]hl]ek
D

h8,e8,T
5C kl

T ;

C jk
T 5

1

V S ]2F

]e j]ek
D

h,e8,T
. ~2.4!

Compliances in the general regime are defined by

S lm
T 5S ]hl

]tm
D
t8,t,T

; S lk
T 5S ]hl

]tk
D
t,t8,T

5S ]ek
]tl

D
t8,t,T

5S kl
T ;

S jk
T 5S ]e j

]tk
D
t,t8,T

. ~2.5!

They can be computed by inverting the~symmetric! total
stiffness matrixC T; thus

S lmC mn1S l lC ln5dln ; S lmC m j1S l lC l j50;

S jmC mk1S j lC lk5d jk ; ~2.6!

here and throughout this paper repeated suffices imply s
mation. Themacroscopic regimedescribes laboratory condi
tions, in which the internal stress is constant~zero!. In terms
of the general regime, the macroscopic stiffnesses and c
pliances are therefore given by

Clm
T 5

1

V S ]2F

]hl]hm
D

h8,t,T
; Slm

T 5S ]hl

]tm
D
t8,t,T

. ~2.7!

The first of Eqs.~2.5! show that the macroscopic compl
ancesSlm are identical to the compliancesS lm in the general
regime. Inverting the submatrixS lm thus gives the macro-
scopic stiffnessesClm . Finally,

10 we use gothic letters for a
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third, internal, regime in which the external strainh is held
constant. The stiffnesses in this regime are identical to the
C jk in the internal submatrix of the general regime, and the
compliancesSjk can therefore be obtained by inverting this
submatrix,

C j lSlk5d jk . ~2.8!

We can now return to the second of Eqs.~2.3!. By ma-
nipulation of partial differentials~see, e.g., Appendix 2 of
Ref. 9! it becomes

S ]F

]hm
D

h8,e,T
1S ]F

]ek
D

h,e8,T
S ]ek
]hm

D
h8,tst,T

50. ~2.9!

The derivative (]ek /]hm)h8,tst,T is purely a property of the
static lattice, and so the condition of constantT can be
dropped. Equation~2.9! then gives

tm52tkS ]ek
]hm

D
h8,tst

, ~2.10!

where the last derivative can be expanded in the form

S ]ek
]hm

D
h8,tst

52S ]ek
]t j

stD
h,tst8

S ]t j
st

]hm
D

h8,e

52Sk j
st
C jm

st .

~2.11!

ZSISA is thus seen to correspond to a state under external
stresses

tm5tk
vib

Sk j
st
C jm

st ~2.12!

since Eqs.~2.2! and~2.3! give tk 5 tk
vib . If the solid is now

allowed to relax to the true equilibrium, so that the external
stress changes by2tm and the internal stress by2tk , then to
the first order the resultant change in external strain is

Dhl'2S lm
T tm2S l l

T t l ~2.13!

'2S lm
T

Sk j
st
C jm

st tk
vib2S l l

T t l
vib . ~2.14!

Since tk
vib is already of the first order, we can neglect the

difference between static and isothermal elastic constants,
and drop the superscriptsT and st. The matricesC andS are
symmetric by definition@Eqs. ~2.4!# and so the second of
Eqs. ~2.6! enables us to substitute2S l lC j l for S lmC jm .
Using also Eq.~2.8! and the symmetry ofSjk , we find

Dhl'S l lC j lSk jtk
vib2S l lt l

vib'S l l~d lktk
vib2t l

vib!50
~2.15!

confirming that to first order the true equilibrium external
strain is the same as that given by ZSISA. However, ZSISA
does not give the correct internal strain, for which a similar
argument, using the third of Eqs.~2.6!, gives

De j52Sjktk
vib . ~2.16!

These results are illustrated graphically in Fig. 1. The
contours ofEst ~dotted! andF ~continuous! in h2e space are
shown for a system with one external and one internal strain
coordinate. The continuous line shows the states of strain
allowed by ZSISA, joining points on static contours with
vertical tangents. The point where this line touches a contour
o. 18, 8 November 1996
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8302 Allan, Barron, and Bruno: Lattice dynamics and isotope effects
of F is the state obtained by then minimizingF. To a first
approximation the contours are identical sets of similar c
centric ellipses, but with different minima, and the contin
ous line is straight. From this it is straightforward to sho
analytically, and very easy to show geometrically~by pro-
jecting the figure on to a plane such that the ellipses beco
circles!, that the true minimum ofF lies directly above this
point, giving the same external strain.

The effect that higher order terms will have on the v
lidity of ZSISA is not obvious. We may indeed expect th
elasticity of the crystal in its equilibrium state of strain to b
softer than that of the static lattice in equilibrium, but pr
vided that all stiffnesses soften proportionately the shape
the contours in Fig. 1 will not alter. The argument remai
valid, as can be seen also from Eq.~2.14!, where the isother-
mal stiffnesses will be simply proportional to the static sti
nesses and the compliances will be proportional by a re
rocal factor. In general, however, stiffnesses will not soft
proportionately, so that the ellipses will change shape
orientation; furthermore, contours will depart from elliptic
shape with increasing distance from the minima. Compu
tions on specific models are needed to investigate when
consequent inaccuracy of ZSISA becomes significant.

III. A ONE-DIMENSIONAL MODEL

The formal analysis given above raises questions
physical interpretation. In particular, what is the nature of t
external and internal stressestl andtj , and why can they be
relaxed from the ZSISA state towards true equilibrium wit
out disturbing the external strain? Such questions are con
niently addressed by taking a specific model.

Consider then the linear chain of diatomic molecul
shown in Fig. 2. To relate this model to the energy conto
in Fig. 1, we must first define external and internal stra
coordinates. The external coordinate is the macrosco

FIG. 1. Energy contours for a system with one external and one inte
strain.••• , Est; —, F. The continuous line shows the states of strain allow
by ZSISA. The pointD marks the equilibrium state of strain of the stat
lattice, the point* the true equilibrium at temperatureT and the pointl the
state of strain given by ZSISA.
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strain, but the choice of internal coordinate is arbitrary; here
we choose it to be the dilation of a molecule. The strain
coordinates are then

h5~a2a0!/a0 , e5~r2r 0!/r 0 , ~3.1!

wherea0 andr 0 are the dimensions at the static lattice energy
minimum. To the lowest order the intermolecular and in-
tramolecular tensions in the static lattice are then

Tl
st5l~a0h2r 0e!, Tm

st5m~r 0e!, ~3.2!

wherel andm are Hooke’s Law constants. The static lattice
energy per unit length is

1

2a0
@l~a0h2r 0e!21m~r 0e!2# ~3.3!

as illustrated by the dotted elliptical contours of Fig. 1. The
static stressestst andtst ~which for a one-dimensional model
have the dimensions of force! are obtained by differentiating
this expression with respect toh ande, respectively,

tst5l~a0h2r 0e!5Tl
st, ~3.4!

tst5
1

a0
@2lr 0~a0h2r 0e!1mr 0

2e#5
r 0
a0

~Tm
st2Tl

st!.

~3.5!

We see immediately that the ZSISA conditiontst50 is
equivalent toTm

st 5 Tl
st, an obvious condition for internal

equilibrium, requiring

e5$la0 /@~l1m!r 0#%h ~3.6!

and that when the condition is satisfied,tst gives the correct
macroscopic static stress. However, whenTm

st Þ Tl
st the values

not only oftst but also oftst depend on our original choice of
internal strain coordinate; for example, if we had chosene to
be the dilation of the intermolecular springs, the roles ofl
andm would have been interchanged, givingtst equal toTm

st

instead ofTl
st. It follows that tst has a simple physical mean-

ing only if there is internal equilibrium, when the model
corresponds to laboratory conditions. Otherwise, the dis-
placement from internal equilibrium must be maintained by
additional applied forces~summing to zero! acting on the
atoms in each unit cell; the external applied forces then de-
pend on where and how the internal forces are applied. These
unphysical stresses arise in calculations either when an ap-
proximation like ZSISA is used that forbids the lattice to
reach its true internal equilibrium, or when separate stresses
are derived from different components of a total free energy.

We next consider the expansion of the lattice caused by
the lattice vibrations, and in agreement with Fig. 1 suppose
that the anharmonicity of the springs is such that at the new

nal
d

FIG. 2. Linear chain of diatomic molecules.
No. 18, 8 November 1996
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8303Allan, Barron, and Bruno: Lattice dynamics and isotope effects
equilibrium both springs are extended from their origin
lengths. At the old static lattice equilibrium~h5e50! both
springs are now under compression, but the ZSISA condi
@Eq. ~3.6!# allows them to relax together until the thrust
one of the springs becomes zero. If the thrust in the o
spring also becomes zero at this point, the true equilibr
has been reached, but in general this will not be so. In Fig
it is the intermolecular springs that lose their compress
first, leaving the intramolecular springs still compressed.
ZSISA free energy can then be reduced further by additio
expansion, because initially the work required to stretch
l-springs will be less than the work obtained from t
m-springs. ZSISA thus finally gives a state in which the m
ecules are compressed while the intermolecular bonds
under tension. Clearly, when the ZSISA condition is
longer imposed, it is possible for both springs to be at le
partly relaxed without alteringh. The analysis of Sec. I
shows that to the first order the relaxation is complete.

Finally, it is worth noting that if instead ofe we take an
internal strain coordinateẽ that is a measure of the departu
from the ZSISA condition, e.g.,

ẽ5e2$la0 /@~l1m!r 0#%h, ~3.7!

the second order expression for the static lattice energ
now diagonal inẽ andh, and there is then no elastic co
pling between internal and external strains. Inh2ẽ space the
principal axes of the ellipses become horizontal and verti
and the line for the ZSISA condition becomes horizon
~ẽ50!. It is then immediately obvious that the point givin
the true minimum ofF lies directly above the point giving
the minimum allowed by ZSISA.

IV. ORTHORHOMBIC POLYETHYLENE

We now return to the calculations7 which prompted the
present work. Previous theoretical estimates of the effec
deuteration on the molar volume of polyethylene had b
based on crude arguments which considered only the di
ence between the C–D and C–H distances. Lacks, assu
the empirical force-field of Karasawaet al.,11 took into ac-
count the entire spectrum of lattice vibrations, and u
quasiharmonic theory with ZSISA to calculate the equil
rium lattice parameters atT50 ~i.e., zero point energy only!
and T5300 K. An experimental value12 of 1.0052 for the
ratio of molar volumesVH/VD at 300 K was in quite close
agreement with the value 1.0059 given by the calculatio
but it appeared to Lacks that this agreement ‘‘must be c
sidered coincidental, because of the neglect of the dif
ences in the C–H and C–D bond lengths.’’ The pres
analysis shows that this reservation is too strong; to a
approximation ZSISA does allow indirectly~by the addition
of fictitious external stresses! for the differences in C–H an
C–D bond lengths, and the reasonable agreement Lack
tained with experiment must be considered encouraging
the model he used.
J. Chem. Phys., Vol. 105,
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Finally, we should emphasize that in polyethylene the
effect of deuteration involves additional mechanisms beside
the simple change of C–H/D bond length suggested by Ba
tell and Roskos.8 In addition to possible effects arising from
the larger polarizability of the C–H bond, Lacks7 has drawn
attention to the strong temperature dependence of the mol
volume isotope effect at temperatures where the C–H/D
bond lengths would not be expected to vary appreciably
That this is so should not be surprising, for several reason

~i! Although the C–H stretching and bending vibrations
will be most affected by deuteration, lower frequency
vibrations involving chiefly interchain forces may
have larger amplitudes, thus enhancing the effect o
interatomic distances.

~ii ! Many of the C–H bonds do not point towards the
nearest atom in a neighboring chain, making suspec
the assumption by Bartell and Roskos8 that the radius
of a cylindrical polymer chain is increased by the in-
crease in bond length.

~iii ! The C–H bending vibrations cause the bond to li-
brate, and hence decrease the distance between t
mean positions of the C and the H atoms.13

Thus not only is the effect of the change in C–H/D bond
length on crystal dimensions calculated by ZSISA to a firs
approximation, but also this effect may not be so great as ha
hitherto been supposed.
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