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Measurement of the hydrodynamic forces
between two polymer-coated spheres

By PAUL BARTLETT, STUART I. HENDERSON AND
STEVEN J. MITCHELL

School of Chemistry, University of Bristol, Bristol BS8 1TS, UK

The hydrodynamic forces between Brownian spheres are determined from a measure-
ment of the correlated thermal fluctuations in particle position using a new method:
two-particle cross-correlation spectroscopy. A pair of 1.3 um diameter polymer-coated
poly(methylmethacrylate) particles were held at separations of between 2 and 20 pm
using optical traps. The mobility tensor is determined directly from the statistically
averaged Brownian fluctuations of the two spheres. The observed distance depen-
dence of the mobility tensor is in quantitative agreement with low-Reynolds-number
calculations.
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1. Introduction

The hydrodynamic interactions between colloidal particles are important from both
a fundamental and an industrial viewpoint. They determine, for instance, the rhe-
ological behaviour of suspensions, the kinetics of aggregation and phase separation
and many other common colloidal phenomena (Russel et al. 1989). Yet despite this,
the hydrodynamic properties of all but the simplest colloidal systems have been a
subject of considerable debate (Segre et al. 1997). A key factor in this uncertainty
has been the intrinsically long-ranged nature of the hydrodynamic coupling between
solid particles. In the dilute limit, where it is sufficient to calculate just the leading-
order interaction, the solution of the stationary Stokes equation (Happel & Brenner
1965) reveals that the interactions decay like the inverse separation (the Oseen ten-
sor). The non-local nature of such interactions has led to considerable theoretical and
numerical difficulties. Experiments have also been problematic. Methods such as light
scattering, which have been used extensively in the past to probe the dynamics of
concentration fluctuations, provide only limited indirect information on the micro-
scopic nature of hydrodynamics in suspensions.

In this paper we report a detailed experimental study of the distance dependence of
the hydrodynamic interactions between an individual pair of polymer-coated colloidal
particles. Optical tweezers are used to hold two uncharged poly (methylmethacrylate)
(PMMA) spheres apart at separations of between 2 and 20 um. The hydrodynamic
forces are measured using a new highly sensitive experimental technique: two-particle
cross-correlation spectroscopy (TCS). TCS measures the statistically averaged in-
stantaneous fluctuations in the position of two probe spheres. The in-plane position of
each sphere is measured to nanometre precision using a quadrant photodetector. This
technique is applied to a pair of colloidal particles suspended in a Newtonian liquid
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to yield a detailed direct test of low-Reynolds-number predictions of hydrodynamic
forces in a simple colloidal system.

Several reports of the test of theoretical predictions for the hydrodynamic cou-
pling between a pair of spheres have already been published (Crocker 1997; Meiners
& Quake 1999). Our experiments differ in several regards. First, in the experiments
reported to date, the surfaces of the colloidal spheres have been bare and not covered
by a polymer layer. Since the adsorption or anchoring of a polymer onto the surface
of a particle is a common method of imparting colloidal stability, it is important
to establish if the presence of a polymer layer modifies the hydrodynamic forces.
Indeed, theoretical calculations (Potanin & Russel 1995) predict that flow within
the polymer layer removes the divergence of the hydrodynamic forces seen at small
pair-separations. Second, the reported experiments have used charged spheres at
relatively low electrolyte concentrations (e.g. 0.1 mM in Crocker (1997)), so that
residual electrostatic interactions between the charged spheres or between the con-
fined spheres and the walls complicate the interpretation. The experiments reported
here used an uncharged colloid, for which previous work (Pusey 1991; Underwood et
al. 1994) has shown that the interaction potential is well approximated by that of
hard spheres.

Our paper is organized as follows. In the next section we describe the details
of our experiment. Section 3 details the Brownian motion of an isolated sphere in a
harmonic optical potential and describes the motion of a pair of dynamically coupled
spheres. We present our results in §4 before concluding.

2. Experimental methods

Measurements were performed on a dilute suspension of uncharged PMMA spheres
of radius 0.65 + 0.02 pm. To minimize the van der Waals forces between the PMMA
spheres, the surface of each sphere was covered with a covalently bound polymer
brush (ca.100 A thick) of poly(12-hydroxy stearic acid) (Antl et al. 1986). A dilute
suspension of the spheres (volume fraction ¢ ~ 10~7) in a mixture of cyclohexane and
cis-decalin was confined within a rectangular glass capillary, 170 um thick. The ends
of the capillary were hermetically sealed with an epoxy resin to prevent evaporation
and to minimize fluid flow. A small concentration of free polymer stabilizer was added
to the suspension to reduce the adsorption of the spheres onto the glass surfaces of
the cell.

A pair of spheres were trapped in a plane ca.40 um above the lower glass surface
of the cell using two optical traps. The traps were created by focusing orthogonally
polarized beams from a Nd:YAG laser (7910-Y4-106, Spectra Physics) with a wave-
length of A = 1064 nm to diffraction-limited spots using an oil-immersion microscope
objective (100x /1.3 NA Plan Neofluar, Zeiss). The resulting optical gradient forces
localize the sphere near the focus of the beam. The centre-to-centre separation of the
two traps could be varied continuously from between 2 and 30 um. Accurate positions
for the optical traps were determined by digitizing an image of two trapped spheres
with an Imaging Technology MFG-3M-V frame grabber. The spheres’ locations were
measured to within 40 nm using a centroid tracking algorithm.

While the mean position of each sphere is fixed by the position of the corresponding
laser beam, fluctuating thermal forces cause small but continuous displacements of
the particle away from the centre of the trap. For small displacements, the optical
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trapping potential is accurately described by a harmonic potential (Tlusty et al.
1998). The restoring force on the particle is proportional to the displacement, with
a force constant, which, for a given particle and beam profile, is a linear function of
the laser power. In the experiments detailed below, the intensities of the orthogonal
beams were carefully adjusted until the stiffness of the two traps differed by less
than 5%. The trap stiffness k was typically of the order of 5.1 x 1075 Nm~—!, which
corresponds to an RMS displacement within the trap of ca.40 nm. The intensity of
each beam at the focal plane was estimated to be of the order of 30 mW.

The positions of the two trapped spheres, 1 and 75, were tracked with nanometre
resolution by observing the interference between the transmitted and scattered light
in the back-focal plane of the microscope condenser using a pair of quadrant detectors
(Gittes & Schmidt 1998). Difference voltages from the sum of the horizontal (X)
and vertical (Y') halves of the quadrant detectors are linearly proportional to the
displacement of the sphere from the optical axis of the trap. The trajectories, 71 ()
and ry(t), were measured for a pair of spheres with mean separations r = |r; — ra|
from between 2.5 and 20 pm. For each value of r, the Brownian motion of the two
spheres was followed for a total of 420 s, at intervals of 50 ps, to yield 223 (8.4 x 10°)
samples of the spheres’ dynamics.

3. Brownian motion of confined spheres
(a) An isolated sphere

A single hard sphere of radius a, moving with a constant velocity U through an
unbounded fluid of viscosity 7, experiences a hydrodynamic drag force Fp in the
direction opposite to motion. In the low-Reynolds-number limit (Happel & Brenner
1965), the velocity of the sphere is a linear function of the force exerted on the
particle by the fluid,

U = —byFp. (3.1)

The constant by is the mobility of an free particle, which, if there is no slip at the
boundary of the particle, is given by Stokes’s law as
1

0~ 6mna’

(3.2)

When the Brownian sphere is confined by a potential, U(x), the drag force increases.
The total force on the particle consists of a random Gaussian force f(t), together
with an additional force due to the potential field, —dU/dx. For a harmonic potential
(of stiffness k) in the ‘long-time’ limit, where inertial terms are negligible, the motion

of a confined Brownian sphere is described by the Langevin equation,
dx
& = bolf(0) — k(o). (33)

with a random particle force f(t), which is Gaussian distributed with the moments,
(f(&)) =0,
(F()f(H)) = 2b5 " kpTS(t — ).

This Langevin equation is readily solved by standard methods (Doi & Edwards 1988)
and the position autocorrelation function (x(¢)z(0)) thus determined. Since there is

(3.4)
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only one characteristic time-scale in the long-time limit, the autocorrelation decays
exponentially,

T

(w020 = " exp( 1), (5.5)

with a decay time 7, which is physically just the time taken by a sphere to diffuse a

distance [*,
« _ [2kBT
"= e (3.6)

where [* is the classical turning point of the confining potential, or the separation at
which the potential energy of the trapped sphere equals its thermal energy kpT.

(b) A pair of spheres

The motion of a pair of harmonically bound particles differs from § 3 a because the
hydrodynamic forces couple the motion of the two spheres together. As one particle
moves, a flow is created in the surrounding fluid, which drives fluctuations in the
position of a neighbouring second sphere (Happel & Brenner 1965). In this section
we analyse the correlated motion of a pair of particles that are coupled by such
dynamic forces. We assume, for simplicity, that

(i) the two trapped particles have the same diameters and are contained within
optical traps with identical force constants, and

(ii) there is no potential coupling between the two spheres.

The hydrodynamic forces acting between equal-sized spheres have been calculated
by a number of authors (Batchelor 1976; Felderhof 1977; Jeffrey & Onishi 1984). In
low-Reynolds-number flow, the hydrodynamic interactions between two spheres can
be described by a set of linear relations between the force or torque exerted on a
sphere and the corresponding translational and rotational velocities. If, as here, the
spheres are freely rotating, the applied torque must be zero and one can eliminate the
angular velocities. In this case, the linear relation between the forces and translational
velocities defines the mobility tensor b,

(ZD - <Zi Z;i) @;) ! (3.7)

where the two spheres are labelled 1 and 2 and the equivalence of the two particles
implies that by; = boy and by = bsy. The spherical symmetry of the Stokes limit
reduces to one of axial symmetry and the mobility tensor depends crucially on the
geometry of the two spheres (Batchelor 1976). The linearity of the Stokes equation
implies that each of the matrices b;; can be decomposed into a pair of mobility coef-
ficients, which describes motion either along the line of the centres or perpendicular
to it,

rr rr
bij(’l") = Al](r)ﬁ + Bij (1 — 72>, (38)

where the coefficients, A;; and B;;, detail the longitudinal and transverse mobilities,
respectively. In the remainder of this paper we shall confine our discussion to the
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longitudinal motion alone. In this case, only two mobility coefficients are needed to
quantify the hydrodynamic forces. Each of these mobilities, A;; and Ajs, is itself a
function only of the normalized separation p = r/a of the two spheres.

The mobility coefficient, A5, couples the fluctuations along the line of the centres
of the two spheres, chosen here as the z-axis, so that the particle coordinates, x1 and
X2, are no longer independent. The extent of their correlation is determined from the
solution of the Langevin equation

()= (i ) (26 ) 0

with the random force characterized by the moments

(fi(t)) =0,
(fi(t)f;(t)) = 2(A7")iskuTo(t — t’),} (3.10)

and (A~1);; is the inverse matrix of A;;. Note that the mobility gradient terms,

dA,;
skeT > =Y
i

)
8:1:j

in the conventional Langevin equation have been ignored in (3.9), because in our
experiments the positional fluctuations are typically two orders of magnitude smaller
than the mean particle separation.

To solve this coupled Langevin equation, we introduce the normal coordinates Xj,

Xi = Zcijxj, (311)
J

and choose the coefficients c;; so that the equation of motion for X; has the following
form (Wang & Uhlenbeck 1945),

dX;

dt

with 4 = 1 or 2. It is readily shown that the matrix ¢;; consists of the normalized
eigenvectors of the mobility matrix A;;, so that the normal modes are

= —kNX; + F@(t> (3.12)

1
X = ﬁ(ﬂh + z2),
1

Xg = ﬁ(xl — 1132),

(3.13)

which describe, in turn, a symmetric collective motion (X7) of the centre of mass of
the two spheres and an antisymmetric relative motion (X2) of the two spheres with
respect to each other along the line of their centres. The mobilities \; of the two
modes are the eigenvalues of the matrix c;;,

A=A+ A127}

3.14
Ao = A1 — Ao, (8.14)
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Figure 1. Cross-correlation functions for 1.30 pm diameter PMMA spheres as a function of delay
time ¢ and at four centre-to-centre separation r. (a) r = 2.47, (b) r = 4.19, (¢) r = 7.44 and
(d) r = 11.47 um. The motion is measured parallel to the separation vector. The solid line shows
a fit to (3.19). For clarity, only one in every 12 data points is plotted.

while the F; are random forces that satisfy

(F() =0, } (315)
(F;(t)Fj(t')) = 20;j\iksTo(t —t').

Since the random forces are independent of each other, motion of the two normal
modes are also independent of each other. The hydrodynamic term that couples
the motion of the two spheres, Ajs, leads to an asymmetry in the decay times of
the normal modes. The time correlation functions of the normal coordinates are
calculated readily from (3.12) as

kgT t
(03,000 = 05 exp (1), (3.16)
with decay times
1
P = T Nl
TN (3.17)
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Inverting the coordinate transformation of (3.11) gives the normalized time corre-
lation functions of the particle centres,

(3.18)

as

hi(t) = ;[exp (—i) + exp(—;;)],
0= oo ) (2]

Inspection reveals that the cross-correlation is very sensitive to the hydrodynamic
coupling between the two spheres. At small times (t — 0), hi2 records only the
time-averaged static correlations (Chaikin & Lubensky 1995), which, at thermal
equilibrium, depend only on the interparticle potential. In the current experiments
there is no potential coupling between the two spheres, and so h12(0) = 0. At long
delay times (t — o0), the hydrodynamic flows that couple the motion decay to zero,
so that the positions of the two spheres are uncorrelated and hia(t — o0) = 0.
The cross-correlation is therefore zero at both short and long times. Equation (3.19)
reveals that the cross-correlation will also be zero at intermediate times unless the
two decay times, 71 and 7o, differ. From equations (3.17) and (3.14), this difference
is a linear function of the hydrodynamic coupling term Ajs. In the limit where
Aqs < A11, which is the case in most physical situations, the cross-correlation has a
minimum at a time which is fixed, to leading order, by the diagonal mobility A1,

G ol ])
t* = 1+ —=—=) +0|[ == , 3.20
/€A11{ 3 <A11 A (3:20)

while the depth of the minimum is determined by the ratio of the off-diagonal and

diagonal mobilities
1[ A A\
hio(t*) = == —= — . 21
12(t) e{AHjLOKAH) (3.21)

4. Results

(3.19)

The normalized longitudinal position cross-correlation, his(t), was measured for a
pair of trapped spheres over a wide range of separations (2.5 < r < 20 pm). Figure 1
shows typical data for four sphere separations. Three features in the experimental
data are striking. First, the data show, rather surprisingly, that hydrodynamic inter-
actions cause the two particles to be anti-correlated at intermediate times. Second,
the time at which the two particles are most strongly anti-correlated, the time t* at
the minimum of hi5, does not vary with the sphere separation, while the strength of
the anti-correlation increases markedly as the separation r reduces.

To interpret these observations, the decay times 7; and 75 of the symmetric and
antisymmetric normal modes were extracted from a least-squares fit of the data
to (3.19). The quality of the resulting fit may be gauged, for the four separations
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Figure 2. The experimentally determined mobility coefficients, b, ! A;;, for motion along the line
of centres as a function of the inverse centre-to-centre separation 1/p = a/r. Here, bg is the mobil-
ity of the PMMA particle of radius a. Solid lines show the predictions of low-Reynolds-number
hydrodynamic calculations for the case of two interacting solid spheres (Batchelor 1976), with
no adjustable parameters.

depicted in figure 1, by studying the solid curves, which are seen to accurately repro-
duce the measured data. From the experimentally determined decay times and trap
stiffness, the elements of the mobility tensor may be estimated as

1/1 1
A= —| —+—
11 2k(¢1+72)’

1 /1 1
Ap=—(=——-=).
12 2]{1(7'1 TQ)

The experimentally determined scaled mobility elements, b, LA, (1), are plotted in
figure 2 as a function of the dimensionless separation of the two spheres, p = r/a. The
two mobilities show a strikingly different dependence on the sphere separation. While
the diagonal mobility is largely unaffected by the sphere separation, the off-diagonal
term scales approximately inversely with p. These trends are, of course, consistent
with the observations made above that the position, ¢ = t*, of the minimum in
the correlation function does not shift with separation (see (3.20)), while the depth
increases with reducing separation (see (3.21)).

(4.1)
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Figure 3. The experimental longitudinal mobility ratio Ai12/A11 as a function of the inverse
sphere separation 1/p, in units of the sphere radius. The solid line shows the predictions of
Batchelor (1976).

The experimental values for the mobilities may be compared with theoretical pre-
dictions for the hydrodynamic coupling of two hard spheres. Batchelor (1976), for
instance, has given the following expressions for the longitudinal mobilities,

15

—1 _ —6
bo All—l—m‘FO(P ),
5 ) (4.2)
—lA - < -7
by~ A2 5 T O(p™"),

which are exact in the limit of large centre-to-centre separation p, as has been con-
firmed by Felderhof (1977). The solid curves in figure 2 show the predictions of the
Batchelor (1976) theory for the longitudinal coupling. As is clear from this figure, the
measured mobilities agree very well with the theoretical predictions over the entire
experimentally accessible range of separations.

The deviations between theory and experiment evident in figure 2 are due largely
to the experimental difficulty measuring the force constant k. This is seen in figure 3,
where the experimentally determined mobility ratio, A12/A11, which, from (4.1), does
not require any knowledge of k, is plotted as a function of the inverse separation 1/p.
The almost quantitative agreement seen, with no adjustable parameters, between the
data and theory confirms the accuracy of Batchelor’s theoretical description of pair
hydrodynamics. In addition, the close agreement between experiment and theory
suggests that, at least for the range of distances explored in the current experi-
ments, the hydrodynamics forces between polymer-coated and uncoated spheres are
comparable.
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5. Discussion

We have presented a detailed experimental study of hydrodynamic coupling between
an isolated pair of polymer-coated hard-sphere colloids. We find near quantitative
agreement with low-Reynolds-number predictions for the hydrodynamic coupling
between a pair of spheres. Surprisingly, we observe a strong anti-correlation in
the positions of the two coupled spheres at intermediate times. At first sight, this
result looks counter-intuitive, since one might naively expect a symmetric correlation
between spheres. However, the effect is a dynamic time-dependent phenomenon, the
origin of which may be understood from the normal modes of the system. The motion
of two spheres, along the line of their centres, decouples when analysed in terms of
a symmetric collective mode and an antisymmetric relative mode. The mobilities of
these independent modes are, from the asymptotic expressions of Batchelor (1976)
and equation (3.14),

(5.1)

where p is the dimensionless centre-to-centre separation, p = r/a. Examination of
the leading terms in this equation reveals that the mobility A; of the symmetric mode
is enhanced and that of the antisymmetric mode is reduced when compared with an
isolated particle. The reduction in mobility of the antisymmetric mode reflects the
difficulty of squeezing fluid out of or into the narrow gap between two approach-
ing spheres, while the increased mobility for the symmetric mode is caused by the
tendency for the fluid flow generated by one sphere to entrain a neighbouring sphere.

The asymmetry in the mobilities of the normal modes, seen in (5.1), causes the
decay times for thermal fluctuation in the two modes to differ. When the two spheres
are close together, the mobility of the symmetric mode is enhanced compared with the
antisymmetric mode. As a consequence, symmetric fluctuations decay more rapidly
than their antisymmetric counterparts. At t = 0, the proportions of thermally excited
symmetric and antisymmetric fluctuations are equal, since the positions of the two
spheres are uncorrelated. With increasing time, the amplitudes of both fluctuations
decay. However, the antisymmetric fluctuations decay at a slower rate than the
symmetric fluctuations, so that the cross-correlation develops a pronounced anti-
correlation. The anti-correlation is, however, dynamical, since over a long time all
fluctuations decay and the spheres again become uncorrelated.

In summary, we have shown that TCS is a promising new technique for the quan-
titative determination of hydrodynamic interactions. TCS experiments are very flex-
ible; the particle size, separation, potential interactions and indeed the dispersion
medium can all be changed independently of each other. Variations of the methods
described in this paper could, for instance, be used to follow the time course of col-
lective fluctuations in a dense (host) complex fluid from the real-space trajectories
of inserted probe colloidal particles. Currently, we are using TCS to study the many-
body hydrodynamic interactions in concentrated particulate suspensions. Two probe
PMMA particles are trapped within an index-matched silica suspension of volume
fraction ¢. The resulting fluctuations in the trajectories of the two probe PMMA
particles are used to determine the effective pair-mobility tensor in the suspension,
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as a function of particle separation and ¢. These measurements promise to provide
new and detailed experimental information on the spatial and temporal development
of hydrodynamic interactions in concentrated suspensions.

This work was supported by a grant from the UK Engineering and Physical Science Research
Council (grant no. GR/L37533). We thank Professor R. M. Simmons, Dr R. B. Jones and Dr
J. S. van Duijneveldt for useful discussions and comments. We also thank Andrew Campbell for
the preparation of the colloidal particles used.
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Discussion

R. B. JONES (Department of Physics, Queen Mary, University of London, UK).
Your data cover particle-particle separations of between 3 and 20 diameters. Could
you tell us how close these particle pairs are to the boundary wall of the cell and
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whether you have seen any evidence of effects due to hydrodynamic interactions with
the cell wall?

P. BARTLETT. In our work, the suspensions were contained in a rectangular glass
capillary of width 170 + 10 um. One advantage of our experimental system is that
spherical aberration is small because of the similarity between the refractive index
of PMMA (n ~ 1.494), the dispersion medium (n ~ 1.44) and immersion oil.
Consequently, we are able to trap colloidal particle deep into the sample, well
away from walls. In the experiments detailed here, the trapped particles were
located ca.40 £+ 0.5 pm (ca. 30 particle diameters) from the nearest glass wall. At
this separation, we have seen no evidence for hydrodynamic coupling with a wall.

B. U. FELDERHOF ([Institut fiir Theoretische Physik A, RWTH Aachem, Germany).
The concept of hydrodynamic screening has been around in the literature for some
time. However, as I have pointed out before, it is inconsistent without theoretical
understanding of the flow of a suspension on a macroscopic length-scale and slow
time-scale. For a suspension of freely moving particles, the flow on a macroscopic
is described by Stokes’s equations with an effective viscosity. The corresponding
Green’s function is Oseen’s tensor with the effective viscosity. This implies that at
large distances from a point source the flow decays inversely with distance and is not
screened.

Hydrodynamic screening does occur when the suspended particles are kept fixed
in space. The flow on a macroscopic scale is then described by Darcy’s equations.
Even in that case, the screening is only partial and the flow due to a point force
decays with the inverse cube of distance. Screening of this type may be relevant in
polymer solutions on a sufficiently fast time-scale.

P. BARTLETT. I thank Professor Felderhof for his interesting comments. I think we
are in total agreement. Our experiments show that the hydrodynamic interactions
between a pair of probe particles in a suspension are unscreened at large separations
(decaying as 1/r) and on time-scales of 1072 s or longer. It is interesting to ask if
hydrodynamic interactions will still remain unscreened in a colloidal gel, for instance,
where the particles are fixed.

D. CHAN (Department of Mathematics and Statistics, University of Melbourne, Aus-
tralia). What is the length of the mean displacement of the target particles compared
with the mean spacing of the small silicon particles?

P. BARTLETT. The root-mean-squared displacement of the probe PMMA particles
is ca. 40 nm, which is some two orders of magnitude smaller than the typical separa-
tion between the two traps. As a result, the separation between the probe particles
is almost constant and equal to the distance between the two trapping laser beams.

The small (host) silica particles used in our experiments were 380 nm in diam-
eter. At the highest volume fraction considered, of 0.075, the average silica—silica
separation will be of the order of two sphere diameters, or 760 nm.

D. CHAN. Can the variation of the mobility matrix elements with volume fraction of
the small silica spheres be accounted for by a change in the viscosity of the median
due to a Bachelor-type effect resulting from the presence of the silica particles? If
not, what can you offer as an explanation of your observations?

Phil. Trans. R. Soc. Lond. A (2001)



Measurement of two-sphere hydrodynamics 895

P. BARTLETT. At large distances, all of our results are consistent with an Oseen
expression for the mobility matrix, but with an effective viscosity which lies above the
solvent viscosity. However, while we find good agreement between the experimentally
determined mobility tensor and the Oseen form at large particle separations, we
observe significant differences at small particle-pair separations.

S. SAFRAN ( Weizmann Institute of Science, Rehovot, Israel). Do the derivations in
slope (1.8) at higher concentrations signify stronger or weaker interactions? If weaker,
it would suggest the screening picture. If stronger, could it be due to depletion
interactions?

P. BARTLETT. As Professor Safran points out, in hard-sphere suspensions, we find
the ratio of the hydrodynamic functions, A13/A11, to be 1.8 £ 0.1, rather than the
figure of 1.5 as expected from the Oseen tensor. The increased ratio indicates that the
hydrodynamic interactions in a suspension are changing more rapidly with distance
than the interactions for a pair of isolated particles. However our measurements show
no evidence for screening. We find conversely that the hydrodynamics interactions
in a hard-sphere suspension always decay as 1/r. I suspect that the deviations we
observe at small separations from Oseen are probably a consequence of packing or
depletion forces acting within the suspension.
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