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We have studied the freezing ofa binary mixture of colloidal poly (methyl methacrylate) 
spheres of size ratio 0.31 and composition AB4 (here A refers to the larger spheres). When 
suspended in a suitable liquid these particles interact via a steeply repulsive (approximately 
hard sphere) potential. The structure of the colloidal crystals formed in this binary system has 
been established from a combination of small-angle neutron and light scattering measurements. 
We find that there is an almost complete size separation on freezing. The crystalline phase 
contains almost exclusively large spheres while the smaller spheres are excluded from the 
crystal into a coexisting binary fluid. This observation is in agreement with recent density 
functional calculations for the freezing of hard sphere mixtures. 

I. INTRODUCTION 

One of the most distinctive features of colloidal systems 
is their ability to form a very diverse range of ordered struc­
tures with characteristic length scales which are much larger 
than atomic dimensions. This ordering is typically on a me­
soscopic scale of 10--1000 nm. A well known example is the 
crystallization, at high densities, of strongly repulsive mono­
disperse spherical colloids. I The long range order is readily 
apparent from the iridescent colors seen in white light which 
arise from Bragg reflections from the ordered arrays of 
spherical particles.2 Such colloidal systems can be consid­
ered as a supermolecular fluid of particles in a continuous 
background.3 With this approach, thermodynamic proper­
ties (phase behavior, structure, etc.) can be understood in 
terms of standard statistical mechanical results developed 
for simple atomic liquids. Because all distances are thereby 
scaled up, the crystal structures are most conveniently stud­
ied by either light or small angle scattering techniques or 
imaged directly by microscopy. 

In recent years colloidal particles with a narrow distri­
bution of sizes have been synthesized4 which interact only at 
closest approach through a steeply repulsive potential. 
When suspended in a liquid such systems,S with an appro­
priate change of scale, closely resemble the classical models 
of hard spheres widely studied in liquid state physics. This is 
evidenced by the phase behavior,s,6 the eqUilibrium crystal 
structure,7 and the osmotic compressibilities.8 In particu­
lar, suspensions show a first-order phase transition from col­
loidal liquid to crystalline states with increasing volume 
fraction. The melting (lPm) and freezing (lPt) volume frac­
tions are6 within a few percent of those values found from 
Monte Carlo simulations of hard spheres.9 Such colloidal 
systems offer the possibility of experimentally studying crys­
tallization in an assembly of hard spheres, probably one of 
the simplest statistical systems to display a first-order fluid/ 
solid phase transition. Here we use a suspension of colloidal 
"hard spheres" to follow the freezing transition in a binary 
mixture of hard spheres. 

a) Author to whom correspondence should be addressed. 

It has recently become possible to predict theoretically 
the phase diagram of simple systems by viewing the solid as a 
highly inhomogeneous liquid. 1O Density functional argu­
ments are used to approximate the properties of this dense 
liquid. Generally these approximate theories are quite suc­
cessful in describing the freezing of systems with short range 
repulsive interactions (although the results for softer, long 
range potentials are less reliable lO 

). For example, the gener­
alized effective liquid approximation of Lutsko and Baus II 
predicts almost quantitative agreement with the simulation 
data of Hoover and Ree9 for a system of identically sized 
hard spheres, namely, a freezing volume fraction of 
lPt = 0.495 and a melting value of lPm = 0.545. Binary mix­
tures, however, present a much more demanding test of a 
freezing theory than does a one component system. In par­
ticular a fluid mixture may freeze into a much greater range 
of crystal structures than a single component fluid. The most 
efficient packing of two different sized hard spheres is not 
known, but will most probably depend critically on the ratio 

of the diameters a = dB/dA , as well as the respective mole 
fractions. The simplest situation occurs when the hard 
sphere components are comparable in diameter. Here the 
stable solid phase is most likely a substitutionally disordered 
fcc or hcp crystal. With this assumption, both Zeng and Ox­
tobyl2 and Denton and Ashcrofe 3 have described density 
functional theories for freezing in mixtures which are in very 
good agreement with the computer simulation results re­
cently reported by Kranendonk and Frenkel14 for diameter 
ratios in the range 0.85<a< 1.00. However, for mixtures of 
hard spheres with a greater size disparity, a < 0.85 say, there 
are significant disagreements between different density func­
tional theories.13.IS-17 These theories differ only in the point 
at which the free energy perturbation expansion is truncat­
ed. 

The freezing of a hard sphere mixture of arbitrary diam­
eter ratio containing an equal concentration of small and 
large spheres was first considered by Smithline and Hay­
metlS and Rick and Haymet. 16 These early calculations 
found that the disordered fcc structure, in which both small 
and large spheres are placed almost randomly on a common 
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lattice, was stable at all size ratios. Different predictions 
come from the theory of Brami et al. 17 according to which 
the CsCI structure was stable for diameters O. 70<a<0. 75 
while the NaCI structure was stabilized at all ratios a<0.46. 
In the intervening gaps none of the solid phases investigated 
were found to be stable with respect to a binary fluid. Finally, 
the weighted density theory of Denton and Ashcroft, 13 

which is in excellent agreement with simulation results for 
both a one and two component (a>O.85) system of hard 
spheres, predicts that for a <0.76 the two components are 
completely immiscible in a disordered fcc solid. The stable 
structure was found to be a pure fcc solid composed entirely 
of large spheres. 

In an earlier studyls we investigated the freezing of a 
binary mixture of colloidal hard spheres of diameter ratio 
a = 0.61. The particles were sterically stabilized poly­
(methyl methacrylate) spheres. If it is assumed that the fluid 
in which the colloidal particles were suspended plays no 
structural role then these experiments may be directly com­
pared with results for hard sphere mixtures. This amounts to 
an assumption that the one-body "embedding" energies are 
constant, independent of the positions of the colloidal spe­
cies. Suspensions containing approximately equal number 
densities oflarge and small spheres, froze into a close packed 
crystal composed almost entirely oflarge spheres (in agree­
ment with the predictions of Denton and Ashcroft l3 ). How­
ever, experiments demonstrated that the structure of the sta­
ble solid phase was a strong function of the composition. 
Suspensions, richer in small spheres than large spheres, froze 
into either an AB2 or an AB\3 structure. 19 In the present 
investigation we again consider a binary mixture oflarge and 
small colloidal spheres, but now one where the second com­
ponent is sufficiently small (a = 0.31) so that it could be 
introduced into the interstitial sites in a crystal of large 
spheres. In this limit a fluid mixture may freeze, in principle, 
into anyone of a very diverse class of crystal structures based 
on either full or partial occupancy of the vacant octahedral 
and tetrahedral sites in an assembly of large spheres. The 
octahedral sites are the most obvious choice for the largest 
possible small sphere with a maximum diameter ratio of 
0.414 in a close-packed fcc lattice. Complete filling of the 
octahedral vacancies gives a structure equivalent to that 
found in NaCl. The question which motivated this study is 
whether, in a mixture of colloidal hard spheres of diameter 
ratio a = 0.31, freezing occurs into such an interstitial struc­
ture or is there, as predicted by Denton and Ashcroft,13 a 
solid state phase separation. To answer this question we have 
studied the structure of the solid phase formed at high densi-

TABLE I. Characterization of the colloidal particles. 

ties by a mixture of hard sphere colloids with small-angle 
neutron and light scattering measurements combined with 
direct observation by electron microscopy. In particular, by 
studying the small-angle neutron scattering (SANS) from a 
mixture of hydrogenated and deuterated colloidal spheres at 
different medium contrasts we have unambiguously separat­
ed the small-sphere structure from that of the larger spheres. 

The remainder of this paper is as follows. Sample prep­
aration, and the experimental aspects of the small-angle neu­
tron and light scattering measurements are discussed in Sec. 
II. In Sec. III we describe the theory of scattering from both 
dilute and concentrated bimodal mixtures of colloidal poly 
(methyl methacrylate) spheres. We treat each different 
sized colloidal species in terms of a polydisperse core-shell 
model. Finally, we present our results in Sec. IV and summa­
rize our conclusions in Sec. V. 

II. EXPERIMENTAL DETAILS 

A. Sample description and characterization 

Three different sets of colloidal poly(methyl methacry­
late) spheres were used in the present study. All the particles 
had a common core-shell structure. The core, of either hy­
drogenated or deuterated poly (methyl methacrylate) 
(PMMA), was surrounded by an outer hydrogenated stabi­
lizing layer of a grafted comb copolymer with poly( 12-hy­
droxystearic acid) (PHS) "teeth" and a poly(glycidyl 
methacrylate/methyl methacrylate) backbone. The largest 
spheres (component A), here labeled h-PBMl, were fully 
hydrogenated while the two sets of approximately equal­
sized smaller spheres (component B) consisted of either hy­
drogenated (h-PBMll) or deuterated cores (d-PBMI4) 
and hydrogenated stabilizers. The hydrogenated particles 
were synthesised by methods similar to those described pre­
viously.4 While the deuterated sample (d-PBM 14) was pre­
pared by repeating the synthesis of the hydrogenated latex, 
h-PBMll, with the hydrogenated monomer replaced by ful­
ly deuterated methyl methacrylate.20 

The number average diameter d and polydispersity (7d 

(standard deviation of the diameter distribution divided by 
its mean) of each system was determined by electron micros­
copy. The results are listed in Table 1. Comparable diameters 
were found from dynamic light scattering measurements. 
Table I also gives the results, for h-PBMI and d-PBMI4 
only, of a least squares fit of the measured form factors in cis 
hls-decalin to the polydisperse core-shell model, described 
in Sec. III A. These results will be described in greater detail 

Diameter (nm) Polydispersity Specific 
DLS SANS TEM TEM Volume 

System do 2(r+~) d U d (cm3 g- l ) 

h-PBMI 315 ± 2 311 ± 2 332 ± 17 0.05 0.853 ± 0.002 
h-PBMII llO± 2 124 ± 12 0.09 0.854 ± 0.002 
d-PBMI4 97 ± 2 93 ± 1 120 ± 12 0.13 0.791' 

• Estimated from the isotopic composition. 
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in Sec. IV. Combining these measurements the diameter ra­
tio a = dBldA is approximately 0.31 ± 0.01, for a binary 
systemofh-PBM1 and d-PBMI4 and 0.36 ± 0.01 fortheh­
PBMl/h-PBMII combination. 

Table I also quotes values for the specific volumes of the 
hydrogenated particles in decalin. The values refer to the 
suspension volume increase per unit mass of added (dried) 
colloidal material. The measured values differ slightly from 
that found for bulk PMMA ( :::::::0.842 cm3 g - I) as a result of 
the excluded volume of the PHS chains. Because of the, as 
yet, incomplete characterization of the stabilizing layer, it is 
impossible to calculate reliably the suspension volume frac­
tion from this data. Here an alternative approach was used to 
fix the suspension volume fraction. As in previous studies, 5 

the interparticle potential was assumed to be "hard sphere" 
in character and the concentration at which crystallization 
first occurred was identified with the value found, from com­
puter simulation,9 for the freezing point in a system of hard 
spheres, namely fPf = 0.494. All other concentrations were 
scaled by the same factor to provide effective hard sphere 
volume fractions (fP). 

The phase behavior of the large hydrogenated spheres 
(h-PBMl) was followed in cis-decalin. Using the experi­
mentally determined density (Table I), freezing and melting 
was observed at core volume fractions (fPc) of 0.414 ± 0.005 
and 0.448 ± 0.005, respectively. The difference between the 
experimentally determined core freezing density and the 
known hard sphere freezing volume fraction of 0.494 was 
attributed to the thickness of the stabilizing layer. Using a 
value for the mean core radius of 147 nm (see Sec. IV A) the 
shell thickness /:::. was calculated as 8.9 ± 0.6 nm, in excellent 
agreement with the chain length expected4 for a fully ex­
tended PHS molecule (-9 nm). The corresponding effec­
tive volume fraction at melting was 0.534 ± 0.006 in reason­
able agreement with the simulation result,9 for hard spheres, 
of fPm = 0.545. 

A different approach was necessary to determine the 
effective volume fraction for suspensions of the smaller 
spheres (h-PBMII or d-PBMI4). These suspensions re­
mained amorphous at all concentrations with no sign of a 
fluid-solid phase transition. The reasons for the absence of a 
phase transition are not fully understood, but it seems likely 
that the significantly larger polydispersities (0' d - 0.13) 
found for the small spheres, as opposed to O'd -0.04 for the 

larger spheres, is important. Theoretical21 .22 results suggest 
that the fluid-solid phase transition is suppressed for poly­
dispersities in excess of some critical value u*. Estimates for 
u* vary but typically lie in the range 0.05--0.11. In the ab­
sence of freezing data, the effective volume fraction of the 
small spheres was determined by assuming the shell thick­
ness /:::. was unchanged from the value found for the larger 
spheres (/:::.-8.9 nm). For the deuterated small sphere, 
where the core radius was 37.5 nm (see Sec. IV A) this gave 
the effective volume fraction (fP) as 1.90 ± 0.08 times the 
core volume fraction (fPc)' 

Table II gives the effective component volume fractions 
and compositions of the suspensions studied. All bimodal 
samples showed rapid crystallization within a few hours. Vi­
sual observation showed that, at the time of both neutron 
and light scattering experiments, the samples contained a 
homogeneously nucleated powder of small (-10-30 f.1-m) 
randomly orientated Bragg reflecting crystallites. 

B. SANS measurements 

The neutron scattering experiments were carried out at 
the Institute Laue-Langevin, Grenoble on the diffractome­
ter D 11. The particles were dispersed in a mixture of cis h 18 -
decalin and diS -octane. The coherent scattering length den­
sity of the suspension medium was varied by altering the 
relative proportions of the hydrogenated and deuterated hy­
drocarbons. The colloidal suspensions were contained in 1 
mm pathlength quartz cells thermostatted at 25°C. Mea­
surements were made at a sample-detector distance of 35.7 
m and a source to sample distance ("collimation length") of 
approximately 40 m. The effective source was the exit of a 
neutron guide 3 cm wide and 5 cm high.23 Defining aper­
tures were placed in front of the sample to collimate the 
incident neutron beam. At the sample position the beam was 
approximately rectangular with a vertical height of approxi­
mately 1.5 cm and a width of 1 cm. The incident wavelength 
distribution was triangular23 and centered on the wave­
length A = 1 nm with a full width at half-maximum 
(FWHM) of 0.09 nm. This gave an experimentally accessi­
ble q range of 0.01 to 0.08 nm - I. The scattering intensity 
data was collected on a two-dimensional detector and aver­
aged radially. Corrections for sample attenuation and scat­
tering from the quartz cell were made by standard ILL pro-

TABLE II. Component volume fractions and number densities of the suspensions studied. Here A labels the larger and B the smaller species. 

Sample 

2 

3 
4 
5 

Component 
A 

h-PBMI 

h-PBMI 

Component Suspension 
B medium tpA 

d-PBM14 cis h 18 -decalin 
dlB-octane 0.540 ± 0.007 

h-PBMII cis hl8 -decalin 0.538 ± 0.007 
CS2 

0.538 ± 0.007 
0.545 ± 0.007 
0.534 ± 0.007 

J. Chern. Phys., Vol. 96, No.4, 15 February 1992 

tpB nB/nA 

0.067 ± 0.003 4.2 ± 0.4 

0 0 

0.035 ± 0.002 1.4±0.1 
0.051 ± 0 .. 002 2.0 ± 0.2 
0.070 ± 0.003 2.8 ± 0.3 
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FIG. 1. A schematic illustration of the scattering geometry used in the 
SANS experiments. The plane of the paper corresponds to the scattering 
plane. For the calculation ofthe smearing corrections the source and sample 
apertures are assumed circular of radii r, and r2 , respectively. The distance 
between apertures is Lo and the distance from the sample to the plane of the 
detector is L. At the detector the beam intensity is trapezoidal in section 
with coIlimation shadows at distances r. and rp' 

cedures. At 35.7 m the incoherent scattering was ofvery low 
intensity and was neglected. Using the measured scattering 
from water, at a sample-detector distance of 5 m, the data 
was further corrected for detector sensitivity and converted 
into absolute units. 

The experimentally measured scattering data is expect­
ed to differ from theoretical curves as a result of two instru­
mental factors: first, the limited resolution of the diffractom­
eter and second, the influence of multiple scattering. Here it 
is assumed that these two corrections can be treated indepen­
dently of each other. 

With an instrument set to detect radiation with a mean 
scattering vector ij (here the bar denotes the average value of 
a parameter), radiation with scattering vector q in a range 
around ij also contributes as a result of the finite divergence 
ofthe incident beam, the spread in neutron wavelengths, and 
the positional resolution of the 2D detector. Here for simpli­
city, we ignore the rectangular shape of the incident beam. 
Instead it was assumed that resolution effects could be de­
scribed in terms of, a suitably averaged, circular geometry. 
Figure I shows a schematic representation of an approxi­
mately equivalent aperture geometry. The source and defin­
ing apertures are circular with radii rl and r2 , respectively, 
and are uniformly illuminated. For such a geometry, the 
image of the source on the detector is trapezoidal in shape 
with the radius, at the detector, of the beam umbra and pen­
umbra shadows as 

r" =..!::...... rl - (1 + ..!::......)r2' 
Lo Lo 

rp = ..!::...... r1 + (I + ..!::......)r2' 
Lo Lo 

(1) 

respectively. Here Lo is the source-sample and L the sam­
ple-detector distance. For the present geometry, the sizes of 
the apertures were fixed at r l = 2 cm and r2 = 0.5 cm, inter­
mediate between the horizontal and vertical dimensions of 
the actual instrument apertures. Calculations showed that 
the resolution corrections were little changed if a slightly 
different choice of aperture sizes was used. 

The importance of making such resolution corrections 
is shown by a simple calculation. The full width at half-maxi­
mum (FWHM) IJ.q of the resolution function is approxi­
mately 

IJ.q = [(~)2 + lJ.iJ~ ]112, (2) 
q A 4 tan2iJ /2 

where IJ.A and lJ.iJ are the corresponding (FWHM) widths 
of the wavelength and intensity distributions respectively. 
lJ.iJis the angle where the intensity of the source image on the 
detectoris reduced to half its maximum value, which is given 
as lJ.iJ = 2rl/L. Equation (2) predicts that for the current 
geometry, IJ.q/q varies between -0.6 for the smallest scat­
tering vector to -0.1 for the largest scattering vectors. 
Hence resolution corrections can be expected to have a sig­
nificant effect on the scattering data, particularly at low q. 

The accurate treatment of instrumental smearing in cir­
cularly symmetric small-angle scattering experiments has 
been described in detail by several authors. 2~26 Here we fol­
low the approach suggested by Ramakrishnan.25 The ob­
served intensity IJ.I°bs, scattered within the solid angle IJ.w, at 
an apparent scattering vector ij from a primary beam of in­
tensity 10 is given by the expression 

a:.:s 

(ij) = 10 TD J II (~ ij)S(A )dA, (3) 

where S(A) is the normalized wavelength distribution, Tis 
the sample transmission, and D is the sample thickness. The 
effective differential scattering cross section per unit volume 
II (q) is a two-dimensional convolution of the theoretical 
cross section d'~/dw with W( q), the intensity distribution of 
the incident beam on the detector, and R(q) the detector 
resolution function. For isotropic scatterers with symmetric 
illumination the functions d~/ dw, W, and R depend only on 
the magnitude of the scattering vector q = Iql and the analy­
sis is considerably simplified. In such a case, the smeared 
intensity II (q) is given by the one-dimensional integral 

i
oo {df - - } II(q) = 0 dw (r)'W(r)'R(r) rJo(qr)dr, (4) 

where fer) denotes the Hankel transform of the function 
!(q), which is given by the expression 

fer) = 100 

!(q)qJo (qr)dq. (5) 

Resolution corrections were made using the triangular 
wavelength distribution SeA) described by Ibel,23 a trape­
zoidal beam profile,24 and a Gaussian detector resolution 
function R (q) with a FWHM equal to the detector cell size 
of I cm. 

MUltiple scattering effects will also distort the observed 
scattering patterns. For example, in dilute samples multiple 
scattering fills in the minima in the particle form factors and 
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increases the measured differential cross section above the 
theoretical (Born) value. Although the general treatment of 
multiple scattering is a delicate problem, analytic expres­
sions for the distortion of the scattering have been derived by 
Schelten and Schmatz27 under the assumption, fulfilled 
here, that scattering occurs only at small angles. In their 
analysis mUltiple scattering is analyzed in terms of Hankel 
transforms of the relevant functions. The transform of the 
measured cross section (d~/dm)ms' determined from a ex­
periment in which multiple scattering occurs, is given by the 
expression 

,...., -

(d~) (r) = ~ exp(s(r)/k 2). 
dm ms D 

(6) 

Here k is the mean wave number of the incident neutron 
beam (217'/A), and s(r) is the transform of the theoretical 
scattering probability seq) = D d~/dm. 

In cases where both mUltiple scattering and smearing 
corrections are significant then, to a firSt approximation, the 
intensity is given by Eqs. (3) and (4) with the transform of 
the theoretical scattering cross section replaced by the multi­
ple scattering result [Eq. (6)]. In the current experiments, 
with sample path lengths of 1 mm, slight multiple scattering 
occured in strongly scattering samples. We have, neverthe­
less, used this path length so as to ensure sufficient scattering 
into the detector at all medium contrasts. The multiple scat­
tering corrections required, as calculated from Eq. (6), were 
fairly minor. Their inclusion was however found necessary 
to achieve a detailed agreement between theory and experi­
ment. 

C. Light scattering measurements 

The limited resolution of small-angle neutron scattering 
experiments becomes very apparent when highly correlated 
structures with large repeat distances, such as colloidal crys­
tals, are studied. In such cases light scattering measurements 
are particularly valuable because the typical resolution 
(t:..q/q) of light scattering experiments may be an order of 
magnitude smaller, for the same scattering vector q, as a 
SANS measurements. Note, however, that SANS provides a 
much wider range of scattering vectors. 

As a result of the significant refractive index mismatch 
between the PMMA particles (n-l.49) and cis-decalin 
(n-1.48) the pure hydrocarbon suspensions used show 
strong multiple scattering of light. Hence light and neutron 
scattering measurements could not be made on the same ex­
perimental sample. Almost index matched samples were 
prepared using a mixed suspension medium of carbon disul­
phide (mass fraction - 0.25) and cis-decalin. Previous stud­
ies have shown that changing the suspension medium in this 
way has no significant effect on the suspension microstruc­
ture. 

Light scattering measurements were made on mixtures 
of h-PBMI and h-PBMII. The scattered intensity was mea­
sured at scattering angles between {} = 20· and 140·, in angu­
lar steps of 0.25·, using an automated light scattering diffrac­
tometer described elsewhere.7 This gave a range of 
scattering vectors between 0.005 and 0.04 nm -1; overlap­
ping with the q range of the SANS measurements. The in-

strument had an angular resolution (FWHM) of approxi­
mately OS. The fractional q resolution (t:..q/q) improved 
from -0.02 at q-0.005 nm -1 to a figure in excess of 0.002 
at q-O.04 nm -1. 

III. SCATTERING THEORY 

A. The form factor of polydisperse core-shell spheres 

The theory of small-angle neutron scattering from a sus­
pension of colloidal particles has been described by, e.g., 
Hayter.28 In the absence of multiple or incoherent scatter­
ing, the measured intensity is proportional to the coherent 
portion of the differential cross section per unit volume 

~! (q)= ~(~bib1exp[iq.(ri-rj)])' (7) 

where bi is the (bound) coherent scattering length of the 
chemical species at the position ro V is the sample volume 
and the brackets describe a thermal average over all possible 
eqUilibrium configurations. The scattering vector q is the 
difference between the wave vectors of the incident and scat­
tered radiation with the magnitude iqi = (41T/,.t)sin({) /2), 
where {} is the scattering angle at which the neutron radi­
ation of wavelength ,.t is observed. For a suspension of mono­
disperse noninteracting particles, there is no phase coher­
ence between waves scattered from different particles so that 
Eq. (7) becomes 

~ (q) = n(1 I bi exp(iq-r i ) 1
2

), (8) 
dm i(u) 

where n is the number density of particles, and the sum is 
over all atoms in the particle volume v. At the small scatter­
ing vectors typically explored in a SANS experiment, the 
intensity is insensitive to details on the atomic scale so that 
we can replace the atomic scattering lengths b i by the locally 
averaged scattering length density defined as 

(9) 

where b i is the scattering length of the atom at the position 
riO Replacing the sum in Eq. (8) by an integration yields an 
expression for the scattering from a suspension of noninter­
acting spheres 

~ (q) = nF(q)2, (10) 
dm 

where the single particle amplitude is defined by the Fourier 
transform 

F(q) = f [per) - Pm ] exp (iq-r) dr. (11 ) 

Here Pm is the scattering length density of the suspension 
medium. In the case of a spherically symmetric profile P (r), 
the expression for the single particle amplitUde reduces to 

f _2 sin qr 
F(q) = 417' r [per) - Pm] -- dr. 

qr 
(12) 

In previous work20 it has been shown that the PHS-PMMA 
spheres used in the present study may be, at least approxi­
mately, described by a two-shell model, e.g., an inner­
PMMA core and an outer shell of solvated PHS stabilizing 
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chains. For such a model, the scattering profile has the ap­
proximate form 

fPc 
per) = iPs 

r<rc 

rc <r<rc + tl.' (13 ) 

where the spherical core of radius rc and scattering length 
density Pc is surrounded by a shell of thickness tl. and scatter­
ing length density Ps' The corresponding particle scattering 
amplitude follows from Eq. (12) as 

F(x) = 4~ (Ps -Pc){yj(x + 8x) -j(x)}, 
q 

(14) 

where x is the dimensionless variable qrc' 8 = tl.lrc' and the 
functionj(x) = sin x - x cos x. y is the scaled medium con­
trast, y = (Pm - Ps )/(pc - Ps)' and determines the relative 
proportion of the scattering from the core or shell. For y = 0 
only the core scatters (Pm = P s ), while for y = 1 the shell 
alone contributes to the total intensity (Pm =Pc)' At the 
match point, where the scattered intensity at q = 0 vanishes, 
r = (1 + 8) - 3. 

Colloidal particles are never identical in size. There is 
always a distribution of particle diameters. To treat this size 
polydispersity, Eq. (10) must be averaged over the particle 
size distribution. Here we assume that there is a distribution 
only of the particle core sizes while the shell thickness tl. is 
fixed for all spheres by the molecular geometry of the grafted 
PHS chains. In this case the single particle form factor 
F2(qrc) is replaced by the size average 

F2( -) 16,r ( )2{ - -2( Z + 2) x =-- Ps -Pc C! +C2X+C3 X ---
~ Z+1 

(15) 

where GCrc ) is the normalized probability of finding a parti­
cle with a core radius between rc and rc + drc ' and rc is the 
mean core radius. Equation (15) has been evaluated nu­
merically for a wide range of distribution functions. 29 Here 
we choose the Schulz distribution,30 which is both physical­
ly realistic as well as mathematically tractable. The normal­
ized form of this distribution is 

~ (Z+ 1 )Z+! 
G(rc ) = rcZ + 1) ~ 

xexp [ - ;: (Z + 1) ] , ( 16) 

where rc is the mean core radius and Z is related to the 
normalized second moment (or polydispersity) O'c of the 
particle core radius distribution by the expression 

0:=(";_1)=_1_. (17) 
c ~ Z+ 1 

For finite Z the Schulz distribution has the realistic feature 
that it is skewed towards large sizes. With increasing Z, Eq. 
(16) asymptotically approaches a Gaussian and, in the limit 
of Z --+ 00, tends to a delta function at rc' 

The size-averaged scattering function for a Schulz dis­
tributed system of core-shell spheres follows from Eqs. 
(14), (15), and (16) as 

+B(x)(z+!)/2(C4 cos[(Z+ I)D(x)] +c7 sin[(Z+ 1)D(x)]) 

+ xB(x) (z+ 2)/2(CS cos[ (Z + 2)D(x)] + Cs sin[ (Z + 2)D(x)]) 

+(~:~)x2B(X)(Z+3)/2(C6 cos[(Z+3)D(x)] +c9 sin[(Z+3)D(X)])}, (18) 

where the functions B(x) and D(x) are defined as 

B(x) = (Z + 1)2 ,D(x) = tan -!(~), 
(Z + 1)2 + 4x2 Z + 1 

(19) 

with x = qrc and the coefficients Ci are given by the expres­
sions 

C 1 =!-y(cosy+ysiny) + r (1 +y), 
2 

C2 = yy(y - cosy), 

r+ 1 
C3 =----ycosy, 

2 

c4 = r(y cosy - siny)2 - C 1 , 

Cs = 2ysiny[ 1 - y(y siny + cosy)] + C2' 

c6 = C 3 - r sin2 y, 

C7 = ysiny - r (1 + yl)sin 2y - cs, 
2 

Cg =C4 -!+ycosy- r (1 +y2)cos2y 
2 

C9 = rsiny(1 - ycosy). 

(20) 

with y = qtl.. For y = 0, where the shell is effectively trans­
parent, this result reduces to that given by Aragon and Pe­
cora3

! for the scattering from a Schulz distribution of homo­
geneous spheres. 

B. The scattering from a concentrated multicomponent 
suspension 

In a concentrated suspension the positions of the centers 
of each particle are correlated so that interparticle interfer­
ence effects appear in the scattered intensity. The general 
expression for the scattering from a multicomponent system 
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of such interacting particles has been given by Guinier and 
Fournet.32 Here, for completeness, we repeat the principal 
equations before considering, in Sec. III C, the specific case 
of a bimodal suspension. Labeling the different sized colloi­
dal species as a, p .. " and the component particles of each 
species by N, M"', etc., the position vector r i of the ith 
nucleus may be written as rfN + R~, where R~ is the center 
of mass ofthe Nth particle of species a and rfN is the position 
vector of the ith nucleus relative to this point. With this sub­
stitution the scattered intensity from a system of v different 
sized colloidal species may be separated into terms describ­
ing separately the intraparticle and interparticle correlations 

dI. (q) = i i (nanp )1I2Fa (q)Ft(q)SaP(q)· 
d(J) a=lp=l 

(21) 

Here Fa (q) is the single particle scattering amplitude of spe­
cies a defined following Eq. (12), na is the number density 
of species a and Sap(q) is the structure factor which de­
scribes the correlations between the centers of species a and 
p. SaP is essentially the Fourier transform of the radial dis­
tribution function gaP (R), which measures the probability 
of finding a particle of species p at a vector distance R from a 
reference particle of species a. Following Kirkwood and 
Buff33 Sap is defined by the ensemble average 

S ( ) _ 1 
aP q - [(Na )(Np )]1/2 

XC~1 M~l exp[iq'(R~ - R~)])' (22) 

which may be rewritten in terms of the partial radial distri­
bution function gaP as 

Sap(q) =Dap + (nanp) 112 f exp(iq·R) [gaP(R) -l]dR 

(23) 

We shall ignore the delta function in Eq. (23) which corre­
sponds to pure forward scattering from the suspension. In 
the particular case where all interactions are spherically 
symmetric Sap (q) is a function only of q = I q I and Eq. (23) 
simplifies to 

(24) 

For an isotropic binary suspension (i.e., V= 2), Eq. (21) 
reduces to the expression 

dI, (q) = naF~ (q)Saa (q) + 2(na np) 112Fa (q) 
d(J) 

c. Bimodal suspensions 

A bimodal suspension consists of a mixture of two sets 
of very differently sized colloidal spheres, here distinguished 
as A and B. Provided the difference in the mean sizes is 

greater than the combined width of each diameter distribu­
tion, then the scattering from such a bimodal suspension 
can, to a first approximation, be treated in terms of a purely 
binary mixture of spheres. For an exact calculation of the 
scattering from a bimodal suspension we proceed by rewrit­
ting Eq. (21) in a form analogous to Eq. (25) 

dI, --
- (q) = nA F;" (q)SAA (q) 
d(J) 

where the SUbscripts identify the parent colloidal system, A 
or B, and the system number densities, polydisperse form 
factors and partial structure factors are given by the expres­
sions 

VA VB 

nA = L naA , nB = L naB' 
aA = 1 as= 1 

PI = a% 1 naAF~A /.~ 1 naA , 

Here v A and VB are the number of particle species compris­
ing each colloidal system (so that VA + VB = v) and the 
positive value of the square root is to be taken. 

To treat a completely polydisperse suspension the sum­
mations in Eq. (27) should be replaced by integrations over 
the component particle size distributions. In the case of van­
ishing size polydispersity (i.e., UA' U B --+0) it is apparent 
from Eq. (27) that the polydisperse self-structure factors 
SAA (q) and SBB (q) approach asymptotically the correct bi­
nary limiting functions Saa (q) and Spp (q), where a and p 
are the species of mean diameters dA and dB' However, by 
contrast the polydisperse cross structure factor SAB (q) re­
duces, in this limit, to ± SaP (q) rather than the expected 
limiting form Sap(q). The sign is determined by the relative 
phases of the scattering amplitudes from particles of type a 
and p [i.e., the sign of the product Fa (q)Fp(q)]. For a 
spherically symmetric scattering profile p(r) the scattered 
amplitude F( q) changes sign at the position of the minima 
qmin in the form factor F(q). Hence in the limit U A' U B -+0, 
the polydisperse cross structure factor SAB (q) shows a sin­
gularity at qmin' Although other polydisperse structure fac­
tor definitions are possible which ensure that SAB (q) ap­
proaches Sap(q) at all q. The present choice has the 
advantage that information can be obtained directly from 
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experiment without the need for additional assumptions 
about the the relative phase of the individual form factors. 

Note that the polydisperse structure factors, defined in 
Eq. (27), are not independent of the scattering amplitudes 
F(q) as is the case for a pure binary mixture. However, as 
will become apparent later, the dependence of the derived 
structure factors on Pm is negligible in most cases and may 
normally be ignored. 

Finally, the differential scattering cross section given in 
Eq. (26) is an experimentally observable quantity, and 

hence must always be positive for all values of nA PI (q) 

and nB F~ (q). From the theory of quadratic forms it fol­
lows that the polydisperse structure factors must satisfy the 
conditions 

SAA(q»O, SBB(q»O, 

- - -2 
SAA (q)SBB (q) - S AB (q);;..O 

at each value of q. 

IV. RESULTS AND DISCUSSION 

A. Dilute samples 

(28) 

An understanding of the dependence of the polydisperse 

form factors F'f(q) and F~ (q) upon the medium contrast 
Pm is an essential first step to evaluating the partial structure 

factors Sij (q). For a single component suspension with a 
sufficiently low number density so that interparticle interac­
tions are negligible, the scattered intensity is simply propor-

tional to the form factor F2 (q). Knowledge of the number 
density n gives the polydisperse form factor directly. 

SANS measurements were made on dilute (<p<0.03) 
suspensions of the larger hydrogenated (h-PBM1) and, sep­
arately, the smaller deuterated spheres (d-PBMI4) at var­
ious scattering length densities Pm between 
Pm = -0.03xto- 4 nm- 2 and 1.24Xto- 4 nm- 2

• The 
suspension medium was a mixture of cis h l8 -decalin and d 18 -

octane. Under these conditions the large hydrogenated 
spheres are only weakly scattering with the match point, 
where the extrapolated q = 0 intensity vanishes, at approxi­
mately Pm -1.04 ± 0.02 X 10 - 4 nm - 2. Conversely, the 
small deuterated spheres are far from match and are strong 
scatterers at all the medium contrasts used here. 

The experimental form factors were modeled in terms of 
an internal core-shell structure. Polydispersity was treated 
as described in Sec. III A. The polydispersity o"c of the core 
radius distribution was chosen so that the variation in the 

TABLE III. Coherent scattering length densities (p). 

= 

Material 

h-PMMA 
d-PMMA 
h-PHS 
cis h 18 -decaIin 
d,.-octane 

1.07 
7.02 

-0.06 
-0.03 

6.42 

overall (core plus shell) radius was as found by transmission 
electron microscopy. This gave an effective core radius poly­
dispersity 0" co for component A and B, as 0.04 and 0.16, re­
spectively. The core was taken as either hydrogenated or 
deuterated PMMA with an associated scattering length den­
sity Pc given in Table III. The thickness of the shell 6. was 
fixed for both sets of particles at the value found above of 
6. = 8.9 nm. The remaining parameters were determined 
from a least squares fit of the experimental form factors to 
the polydisperse core-shell model [Eq. (18)]. Corrections 
for instrumental smearing and multiple scattering were in­
cluded by the methods described in Sec. II B. 

The mean core radius rc was determined from measure­
ments in cis h 18 -decalin. In this solvent the shell is virtually 
matched and so gives practically no contribution to the scat­
tered intensity. Fits to the experimental form factors gave 
the mean core radii, for component A and B, as 146.6 ± 0.3 
and 37.5 ± 0.2 nm, respectively. With the core radius deter­
mined, the scattering length density of the shellp. was found 
by matching the calculated and measured scattering curves. 
All comparisons were made in absolute units. The least 
squares fitted values of P. for components A and B are plot­
ted as a function of the medium contrast in Fig. 2. All other 
parameters were fixed at the values described above. The 
observation that the fitted values of P. are not constant but 
vary, almost linearly, with the medium contrast Pm strongly 
supports the hypothesis that the shell contains solvated sta­
bilizing chains. Since the scattering length densities of both 
PHS and cis hlS-decalin are close to zero, the values of Ps 
directly measure the average volume fraction of diS -octane 
within the shell. For the data given in Fig. 2 this diS -octane 
fraction varies between 0.05 and 0.25. 

Figures 3 and 4 show a comparison between the calcu­
lated and experimental scattering curves for h-PBM 1 and d­
PBM14 at five different medium contrasts. The agreement is 
generally very good with all experimental form factors ade­
quately modelled by a simple core-shell structure. However, 
the relatively poor fit to the form factor of the large spheres 
at Pm = 1.24 X to - 4 nm - 2, just above the intensity match 
point, suggests that a more sophisticated model for the graft-

2.0 
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FIG. 2. Results from fitting the measured form factors of (a) h-PBMI and 
(b) d-PBMI4 spheres to the poJydisperse core-sheli model. The best-fit 
values for the scattering length density of the sheli (p,) are given as a func­
tion of the medium scattering length density (Pm)' The dashed lines are 
drawn as guides to the eye. 

J. Chern. Phys., Vol. 96, No.4, 15 February 1992 Downloaded 09 Oct 2010 to 137.222.10.113. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



3314 P. Bartlett and R. H. Ottewill: Binary colloidal crystal 

4 

2 

4 
8 ~6 2 

4 °0 2 4 6 8 

2 ~ . . 
4 

2 4 6 8 

2 ., ~.h:."""·"""'1 
E 4 
~ 

g 
0 2 .;; 

0 
...J 

00 2 4 6 8 
q 110-2 nm-1 

FIG. 3. The scattering intensities (points) measured from dilute 
(9' = 0.03) suspensions of the large hydrogenated spheres (h-PBM1) at 
medium scattering length densities of, from top to bottom, - 0.03, 0.63, 
0.78, 1.02, and 1.24 X 10 -. nm - 2. The solid lines are the results of a least­
squares fit to the polydisperse core-shell model described in the text. 
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FIG. 4. Comparison of the experimental form factor (points) of the small 
deuterated spheres (d-PBMI4) with the results (solid lines) calculated 
from the polydisperse core-shell model. The scattering length density of the 
suspension medium was (in unitsoflO- 4nm -2) (a) - 0.03, (b) 0.64, (c) 
0.79, (d) 0.95, and (e) 1.17. The curves have been scaled so that the intensi­
ty levels are for the same colloid number density as the data of Fig. 3. For the 
sake of clarity each curves has been shifted by (a) + 0.5, (b) 0.0, (c) 
- 0.5, (d) - 1.0, and (e) - 1.5 units vertically. 

ed layer structure may be necessary to accurate reproduce 
data both above and below match. Nevertheless, for the con­
trasts considered here the simple core-shell model is seen to 
be adequate. 

B. SANS measurements 

The structure of the colloidal crystals formed by a bina­
ry mixture of spheres of diameter ratio a - 0.31 (suspension 
1 in Table II) was studied by contrast variation techniques. 
Large protonated spheres were mixed with smaller deuterat­
ed spheres (B) in the proportions AB4 in a suspension of 
total volume fraction 0.61. Within a few hours the binary 
mixture showed a significant degree of crystallization, and 
after a day the sample volume was completely filled with 
small crystallites. SANS measurements were made on five 
such samples, with nominally identical component volume 
fractions and medium scattering length densities of - 0.03, 
0.63, 0.79, 1.02, and 1.24 X 10 - 4 nm - 2. 

The scattered intensity from each of the five different 
contrast measurements may be concisely written in a matrix 
notation as 

I(q) = P(q) 'S(q) (29) 

following Eq. (26). Here I(q) is a five-dimensional column 
vector consisting of the individual scattering intensities 
tIT,/dOJ(q), P(q) is a 5X3 matrix ofform factors with the 

(A) 

1 

0 

"\ 
(B) 

1 

--" 
... , ... 

0 
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2 4 6 8 
q/10-2 nm-1 

FIG. 5. The experimentally determined partial structure factors (a) SAA' 
(b) SBB' and (c) SAB of the (partially) crystalline mixture of composition 
AB. and total volume fraction 0.61. Here A refers to the large hydrogenat­
ed spheres (h-PBMl) and B labels the smaller deuterated component (d­
PBM14). The solid lines are guides to the eye. 
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rows {nA FT (q), 2 [nA nB Ff (q) n (q) ] 112, 

nB ~ (q)}, and the vector of structure factors is given by 
ST(q) = [SAA (q),SAB (q),SBB (q)]. Inversion of this ma­
trix equation, at each value of q, gives the corresponding 
partial structure factors. Here the solution is overdeter­
mined with five equations for the measured intensities ex­
pressed in terms of just three unknown structure factors. 

Attempts to solve these matrix equations by standard 
least-squares techniques were, however, unsatisfactory. 
There was a significant amplification of experimental errors, 
particularly in the derived S AA' and to a lesser extent, the 
S AB structure factors. As one might physically expect, the 
least squares estimates of S AA and S AB were most sensitive to 
errors near the minima in the large sphere form factors 
(q-0.03 and 0.05 nm - I) and at high q. This sensitivity, in 
severe cases, resulted in unphysical values for the large 
sphere self structure factor. To avoid these difficulties, par­
tial structure factors were chosen34 which minimized the 
weighted sum of the squares of the discrepancy between cal­
culated and measured intensities and satisfied the conditions 
ofEq. (28). This ensured that the calculated intensities were 
always positive at all medium contrasts. The corresponding 
constrained structure factors differed from the least-squares 
estimates only in the particular case of SAB (q) for q>0.045 
nm - I and S AA (q) for q>0.03 nm - I. There was no notice­
able change in SBB (q). The resulting partial structure fac­
tors are plotted in Fig. 5. The internal consistency of the 
measured data is illustrated in Fig. 6 by the close agreement 
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FIG. 6. Comparison of the experimental scattered intensities (points) with 
the results calculated (solid lines) from the partial structure factors given in 
Fig. 5. The curves correspond to the scattering from a bimodal mixture of 
composition AB. and volume fraction 0.61 at medium contrasts of, from 
top to bottom, - om, 0.63, 0.79, 1.02, and 1.24 X 10 -. nm - 2. 

between the intensities calculated from the fitted structure 
factors (solid lines) and those measured (points). The fact 
that the data may be adequately represented in terms of just 
three functions supports our assertion (Sec. III C) that the 
contrast dependence of the polydisperse structure factors 
may be ignored. 

To understand these findings, consider first the form of 
S AA' the self-structure factor of the large spheres. S AA pre­
sents a classical shape with a low value approaching q = 0 
and peaks at q - 2.5 X 10 - 2 and 4.6 X 10 - 2 nm - 1, which 
reflect the strong spatial correlations between the large 
spheres in the crystalline structure. The origin of these peaks 
is clearly seen from light scattering measurements on the 
same samples. Light scattering experiments (which were 
sensitive only to the positions of the large spheres, i.e., SAA) 
showed sharp Bragg reflections typical of single component 
hard sphere colloidal crystals.7 The most intense peak was 
the interplane (001) reflection, indexed on a hexagonal ba­
sis, which occured at a wave vector of - 2.29 X 10 - 2 nm - I. 

Reflections were also expected at approximately 3.74 X 10 - 2 

nm- I (110), 4.39x1O- 2 nm- I (l11), and 4.58X1O- 2 

nm - I (002). These Bragg reflections are broadened into the 
peaks observed by SANS at q-2.5 and 4.6X1O- 2 nm- I 

because of the much lower resolution of neutron as com­
pared to light scattering measurements (cf. Secs. II Band 
II C). Finally, we note that the measured asymptotic value 
of SAA was nearly 0.3, which differs from the theoretical 
value 1. This disagreement is probably due to a systematic 
experimental error. As is often done in the literature, we 
could have corrected our values of SAA by a multiplicative 
constant. 

In comparison the small sphere structure factor SBB is 
very different. First, it displays no strong interference peaks 
and secondly rather than a low value at q = 0 Sss shows a 
rise which suggests a long range clustering among the 
smaller spheres. The absence of Bragg reflections demon­
strates that the small spheres were not present in any appre­
Ciable numbers in the crystallites which were apparent to the 
eye. With, for example, a NaCl structure present strong cor­
relation peaks would be expected in SSB at the same scatter­
ing vectors as found in SAA' i.e., 2.3 X 10- 2, 3.7X 10- 2, and 
4.4 X 10- 2 nm - I, etc. The form of SSB and the cross struc­
ture factor S AB can, however, be understood in terms of the 
structures expected for a fluid assembly of very differently 
sized large and small spheres. 

Within the Percus-Yevick (PY) approximation, Biben 
and Hansen35 have shown that when uB/uA -+0, the small 
sphere structure factor SSB (q) approaches the limiting form 

S S • 6 qJAqJB £ 
BB (q) = BB (q) + u(q). (30) 

1Tifo 1 - qJA 

Here S:B (q) is the PY structure factor for a homogeneous 
one-component fluid of small spheres with an effective vol­
ume fraction qJ: = qJB/(l - qJA)' which is just the small 
sphere volume fraction once the volume occupied by the 
larger spheres has been subtracted. The delta function 8(q) 
describes the confinement of the small spheres within the 
interstities of the neighboring shell of large spheres. This 
expression, although valid in the limit uB/uA -+0, describes 
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the salient features of the observed small sphere structure 
factor rather well. For an inhomogeneity on the scale of the 
large sphere (i.e., 311 nm) we expect a sharp peak at the 
origin, of width 21T/311- 0.02 nm - 1, as observed. In addi­
tion away from q - 0, SBB should approach the effective one­
component structure factor S;B' which has a maximum at a 
scattering vector of 21T/aB -0.065 nm - \ as is evident in the 
experimental data. 

A full comparison between theory and experiment re­
quires calculations for mixtures with both finite diameter 
ratios and size polydispersity. For the hard sphere interac­
tion analytic expressions have been derived by Vrij36 for the 
scattering functions in an arbitrary multicomponent mix­
ture within the PY approximation. These results are readily 
generalized to treat a bimodal mixture of hard spheres repre­
sentative of h-PBMI (dA = 311 nm, a A = 0.04) and d­
PBM14 (dB = 93 nm, a B = 0.13). The inherent size poly­
dispersity of each component has been modeled by taking a 
Schulz distribution of hard sphere diameters with the same 
mean and polydispersity as the experimental system. It was 
assumed that each particle had an internal core-shell struc­
ture with the scattering parameters determined in Sec. IV A. 
The resulting polydisperse PY structure factors for a suspen­
sion of partial volume fraction lP A = 0.45 and lPB = 0.053 
(composition AB4 ) is plotted in Fig. 7. In order to ensure 
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-1 o 2 
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4 6 8 

FIG. 7. Polydisperse structure factors (a) SAA' (b) SBB' and (c) SAD calcu­
lated from the Percus-Yevick approximation for a fluid mixture of hard 
spheres of composition AB. and total volume fraction O.S1. The larger 
spheres (A) have a mean diameter of 311 nm and a size polydispersity of 
0.04 while the smaller spheres (B) are 93 nm in diameter with a polydisper­
sity of 0.13. 

the calculated structure factors are directly comparable with 
the measured data in" Fig. 5, the theoretical results have been 
smeared by the procedures described in Sec. II B. 

The qualitative agreement between the small sphere 
structure factors (SBB and SAB) in Figs. 5 and 7 is particu­
larly striking. Evidently, in the experimental sample the 
small spheres are present in a fluid rather than a crystalline 
environment. 

c. LIght scattering measurements 

Independent evidence for the size separation of big and 
small spheres was obtained from light scattering under con­
ditions in which the scattering from the large spheres pre­
dominated. This is readily achieved since, away from match, 
the small sphere scattering is lower by a factor of approxi­
matelya6 (I.e., - 2 X 10 - 3) as compared with a large sphere 
of the same profile. Hence light scattering experiments are 
sensitive, in the main, only to the large sphere correlations 
(I.e., SAA)' Such measurements are complementary to the 
neutron scattering results where experimental conditions 
were deliberately chosen so as to reveal the structures 
formed by the smaller component. 

Light scattering measurements were made on four col­
loidal samples (labeled 2-5 in Table II) with a large sphere 
volume fraction (nominally) fixed at lPA = 0.539 and differ­
ing amounts of a second smaller component B. Overall sus­
pension compositions were A, AB1.4' AB2.0 , and ABa. The 
hard sphere diameter ratio was estimated as a -0.36. When 
left undisturbed, all four samples crystallized. Crystalliza­
tion was nucleated homogeneously throughout the samples 
and small crystallites of size 10-30 !lm formed and com­
pletely filled the available volume. 

The measured scattering intensities are plotted in Fig. 8, 
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FIG. 8. The measured light scattering intensity from mixtures of composi­
tion A, ABI.4' AB2.0' and ABa (top to bottom) as a function of the scatter­
ing vector q. The partial volume fraction of the large spheres (A) was the 
same in all mixtures, tpA = 0.54. The dashed lines denote the positions of 
the first two sharp Bragg reflections in the pure single component crystal of 
large spheres. 
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displaced for ease of comparison. All four diffraction pat­
terns are similar in form. Two sharp Bragg reflections, at 
q(OOI) -2.3 X 10 - 2 nm -I andq(llO) -3.7X 10- 2 nm -I, are 
evident together with a broad background of diffuse scatter­
ing. Similar diffraction patterns have been observed in single 
component colloidal crystals and have been interpreted in 
terms 7 of a random stacked crystal of close packed planes of 
spheres. As is evident from Fig. 8 the crystalline order of the 
large spheres is relatively unaffected by the addition of the 
second smaller component. The large spheres even in the 
presence of the small spheres remain at the vertices of a ran­
dom stacked crystal which is structural very similar to that 
formed in the absence of small spheres. Indexing the reflec­
tions in Fig. 8 on this basis gives the length of the equivalent 
face centred cubic unit cell (equal to '\12 times the large 
sphere separation) as 490,480,477, and 475 nm in the crys­
tals formed by the suspensions of composition A, ABI.4' 
AB2.o , and AB2.8' It is apparent that the large sphere inter­
particle spacing in the the solid phase contracts as the 
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FIG. 9. Phase diagrams calculated from the immiscible hard sphere model, 
described in the text, for binary mixtures of diameter ratio 0.4 (solid lines), 
0.3 (dotted lines), and 0.2 (dashed lines). In the upper part the mole frac­
tion of small spheres X B in the initial suspension is given as a function of the 
osmotic pressure, in units of kT /d~, wheredA is the diameter of the larger 
spheres. The lower figure gives the density of the larger spheres in the coex­
isting fluid and crystal of large spheres (in units of d;:: 3) in terms of the 

osmotic pressure. 

smaller component is added. The effect is, however, pretty 
small with the unit cell shrinking by at most 3.2%. As one 
might physically guess, this suggests that the smaller spheres 
are not present to any significant degree in the crystal of 
large spheres. To see this we consider results from two sim­
ple analytical models for hard sphere freezing. 

Ermak et al. 37 have demonstrated that if the smaller 
component is soluble in the large sphere crystal the unit cell 
of the coexisting solid lattice expands as small particles are 
introduced. The expansion is greater the bigger in size the 
small component is. However, the effect is fairly small. For 
example, when the small component is present at about a 
mole fraction of 0.5 in both coexisting phases, the unit cell 
expansion is a little bit less than 1 % for point particles and 
slightly more than 1 % for spheres of diameter ratio a = 0.1. 
In this model the fluid phase is enriched in small spheres 
while the coexisting solid is correspondingly depleted. Simi­
lar conclusions have been reached by Xu and Baus38 from a 
density functional treatment of hard sphere freezing within 
the PY approximation. For diameter ratio in the range 
0.2 < a < 0.5 where both the PY approximation is expected 
to hold and their model is still meaningful the presence of a 
finite concentration of small spheres lowers the density of 
the large sphere lattice. 

If conversely spheres of the smaller component are in­
soluble in the large sphere crystal then the unit cell of the 
coexisting solid lattice is expected to contract. This increase 
in the density of the large sphere lattice has been both pre­
dicted39 and confirmed experimentally. IS A detailed discus­
sion of the immiscible sphere model has been described pre­
viously39 for a = 0.65 and 0.85. Here, however, the fluid­
solid phase eqUilibria is presented for mixtures of very differ­
ent sized spheres. Utilizing simulation results for hard 
spheres in the fluid and solid phases40 and equating the pres­
sure and chemical potential of the larger component in both 
phases leads to the phase diagrams plotted in Fig. 9. The 
addition of small particles is seen to increase the density of 

1 pm 
FIG. 10. Scanning electron micrograph of the colloidal crystal formed in a 
mixture of composition AB2.0 • Note that most of the interstitial sites in the 

crystal of large spheres are vacant. 
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the coexisting solid phase. This increase in density is most 
striking for mixtures of hard spheres with small diameter 
ratios and a high proportion of small spheres. For a diameter 
ratio of a-0.36, when each component is present in equal 
numbers in the fluid phase (Le., X B = 0.5) the unit cell of the 
large sphere lattice contracts by approximately 4%. 

On the basis of these calculations it seems reasonable to 
assume that the spheres of the smaller component are not 
soluble to any significant degree in the large sphere crystals. 
This observation correlates well with the SANS measure­
ments described in Sec. IV B. The immiscible hard sphere 
model predicts both the direction of the large sphere lattice 
parameter change as well as furnishing a reasonable estimate 
of its magnitude. This simple model is, however, only in 
qualitative, rather than quantitative, agreement with the 
data. Detailed calculations predict lattice parameter reduc­
tions of 5.3%, 7.0%, and 7.6% for the three binary suspen­
sions. The corresponding experimental values are 2.1 %, 
2.8%, and 3.2%. It is possible that this behavior is either a 
result of inaccuracies in the present model or may suggest 
there is a small, but significant, degree of mutual solubility. 
Scanning electron micrographs of dried-down colloidal sam­
ples, reproduced in Fig. 10, suggest only a very limited de­
gree of small sphere solubility in the crystal oflarge spheres. 

V. CONCLUSIONS 

The present experiments demonstrate that a binary sus­
pension of colloidal spheres of diameter ratio a = 0.31 do 
not form interstitial crystals although such structures are 
geometrically feasible. Instead on freezing, there is a size 
separation with the large spheres forming a crystalline struc­
ture while the smaller spheres are excluded from the crystal 
into a second (coexisting) fluid phase. Partial structure fac­
tors have been determined from small-angle neutron scatter­
ing measurements. These may be qualitatively described by a 
hard sphere model for the interaction potential between all 
colloidal components. A simple analytical model for the 
phase equilibria predicts that the interparticle spacing in the 
large sphere crystal should contract as further small spheres 
are added. This has been confirmed by light scattering mea­
surements. Scanning electron microscopy on dried colloidal 
crystals show that the small spheres are predominantly in­
soluble in a crystal of large spheres. 
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