
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Ingenta Content Distribution - Routledge]
On: 9 October 2010
Access details: Access Details: [subscription number 791963552]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Molecular Physics
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713395160

The rotational-vibrational spectrum of symmetric non-rigid triatomics in
hyperspherical coordinates: the H+

3 molecule
P. Bartletta; B. J. Howardb

a School of Chemistry, Cantocks Close, Bristol University, Bristol, U.K. b Physical Chemistry
Laboratory, Oxford, U.K.

To cite this Article Bartlett, P. and Howard, B. J.(1990) 'The rotational-vibrational spectrum of symmetric non-rigid
triatomics in hyperspherical coordinates: the H+

3 molecule', Molecular Physics, 70: 6, 1001 — 1029
To link to this Article: DOI: 10.1080/00268979000101491
URL: http://dx.doi.org/10.1080/00268979000101491

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713395160
http://dx.doi.org/10.1080/00268979000101491
http://www.informaworld.com/terms-and-conditions-of-access.pdf


MOLECULAR PHYSICS, 1990, VOL. 70, NO. 6, 1001-1029 

The rotational-vibrational spectrum of symmetric non-rigid triatomics 
in hypersphericai coordinates: the H~ molecule 

By P. BARTLETT 
School of Chemistry, Cantocks Close, Bristol University, Bristol BS8 1TS, U.K. 

and B. J. HOWARD 

Physical Chemistry Laboratory, South Parks Road, Oxford University, Oxford 
OX1 3QZ, U.K. 

(Received 7 March 1990; accepted 18 April 1990) 

Theoretical methods are described for the calculation of rovibrational levels 
of symmetric non-rigid triatomics using the symmetric hyperspherical coordi- 
nates of Smith and Whitten. An adiabatic separation of radial and angular 
motion is shown to be valid for H~-. The adiabatic angular functions are chosen 
as a linear combination of products of angular-momentum eigenfunctions and 
specially developed hyperspherical basis functions. Corrections to the adiabatic 
approximation are included by BriUouin-Wiguer perturbation theory. Results 
are given for the H~ system. The present approach has the advantage that all 
symmetric arrangements are treated equivalently. 

1. Introduction 

In the last few years significant progress has been made in the theoretical treat- 
ment of large-amplitude motion in small molecules. For near-rigid molecules the 
most widely used choice of coordinates originates from the work of Eckart i1]. In 
this approach it is assumed that the potential-energy surface defines an equilibrium 
nuclear geometry. However, it is widely recognized that the Eckart embedding of 
the body-fixed (BF) axes is unsuitable for molecules with large-amplitude motions. 
The difficulty is easily seen by considering the case of a triatomic molecule in which 
a large-amplitude vibrational motion distorts the molecule into a linear geometry. 
The instantaneous moment-of-inertia tensor has a zero diagonal element, its inverse 
is singular, and hence the Eekart Hamiltonian is undefined. This apparent singu- 
larity arises because it is not possible to define all three Euler angles uniquely for a 
collinear arrangement of atoms. Consequently, the domain of the Eckart Hamil- 
tonian is restricted to those functions that vanish sufficiently rapidly close to the 
linear geometry so that the matrix elements of the internal Hamiltonian converge 
I-2]. Although the singularity in the kinetic-energy operator may always be avoided 
by, for example, arbitrarily confining trial functions 1,3], the accuracy of this 
approach is questionable if the molecular potential does not exclude collinear 
geometries. The treatment of large-amplitude motion in highly symmetric molecules 
is further complicated by the Eckart fixing of the body-fixed axes to the equilibrium 
geometry. Each symmetry operation requires the setting up of a new Eckart axis 
system, with a consequent redefinition of the Euler angles. This leads to consider- 
able difficulty in constructing trial functions with the full permutational symmetry. 

Several new techniques have been developed for the calculation of vibrational- 
rotational levels that avoid some of the problems associated with the Eckart embed- 
ding of the BF axes. In particular, Tennyson and Suteliffe 14, 5], in calculations on 
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1002 P. Bartlett and B. J. Howard 

systems as diverse as KCN and HeHF, have used Jacobi (atom--diatom) coordinates 
with a BF z axis aligned along the collision coordinate. In these coordinates the 
Hamiltonian is sufficiently simple that large-amplitude internal motion may be 
completely described. A careful choice for the asymptotic form of basis functions 
ensures the apparent singularity associated with the linear geometry does not cause 
any numerical problems. This approach has been applied to the symmetric oblate 
top H~ [6], although accurate calculations required very large basis set expansions. 
The slow convergence of these calculations reflects two difficulties with the use of 
Jacobi coordinates. First, the operations of the molecular symmetry group Dah 
produce a complicated mixture of Jacobi coordinates, which makes it very difficult 
to define basis functions with the full permutational symmetry. Consequently, calcu- 
lations have been limited to using a partially symmetrized basis set, with the result 
that large numbers of basis functions are required for a good representation. Sec- 
ondly, the use of an in-plane BF z axis couples all the different BF angular- 
momenta components together, leading to a set of strongly coupled rotational 
states. Any realistic calculation for H~ in Jacobi coordinates must include all off- 
diagonal Coriolis and asymmetric-top interactions. No simplifying rotational- 
decoupling approximation is appropriate. The size of this full rovibrational 
calculation increases linearly with the value of the total angular momentum d and 
soon becomes intractable. Fully coupled calculations have consequently been 
limited to low-J states, typically J ~< 4 [61, although Tennyson and Sutcliffe [7"1 
have proposed a two-step variational procedure for the calculation of highly excited 
rotational states of H~ and its isomers. 

In symmetric molecules, large-amplitude motion is more efficiently treated using 
a symmetrised set of coordinates in which all symmetric arrangements are treated 
equivalently. Some time ago, Smith and Whitten (SW) I'8] developed a system of 
hyperspherical coordinates in which atomic permutation is accomplished simply by 
adding a constant phase angle to one of the angular coordinates. Apart from this 
phase-angle difference, the internal coordinates are unaffected by permutation. It is 
therefore relatively easy to generate basis sets that transform as one of the irreduc- 
ible representations of D3h. A very clear description of the properties of this coordi- 
nate system has been given by Johnson [9]. For calculations of large-amplitude 
motions in symmetric oblate tops such as H~-, the SW hyperspherical system has 
several advantages when compared with Jacobi coordinate systems. First, the full 
molecular symmetry may be used to reduce the size of any calculation. Secondly, 
there is a unique radial coordinate p that is invariant under all symmetry oper- 
ations. Motion along the radial coordinate may therefore be formally separated 
from motion in the angular coordinates. With an adiabatic assumption, the internal 
eigenstates are expressed as a product of the solution of a five-dimensional equation 
(two internal and three rotational degrees of freedom) and a set of coupled radial 
equations. The usefulness of this approach depends upon the strength of the non- 
adiabatic radial-coupling terms. In the molecular systems so far considered [10"1 the 
radial coupling was sufficiently small that the correction terms could be accurately 
included by a perturbation treatment. The adiabatic separation, which is possible in 
a hyperspherical (but not in a Jacobi) coordinate system, reduces the maximum 
dimension of the matrix equations that must be solved, leading to a considerable 
saving in computational effort. Thirdly, the SW coordinate system is an instan- 
taneous principal-axis system, with the BF z axis directed along the symmetry axis 
of the oblate top. This choice minimizes the off-diagonal coupling between states of 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
n
g
e
n
t
a
 
C
o
n
t
e
n
t
 
D
i
s
t
r
i
b
u
t
i
o
n
 
-
 
R
o
u
t
l
e
d
g
e
]
 
A
t
:
 
2
0
:
1
2
 
9
 
O
c
t
o
b
e
r
 
2
0
1
0



Rovibrational states of H~ 1003 

different BF z component of angular momentum, and suggests that an angular- 
momentum decoupling approximation, analogous to the centrifugal sudden approx- 
imation [11] used in inelastic scattering, may be useful. This promises to reduce 
significantly the amount of computer time required to calculate high rotational 
states. 

The triatomic molecular ion H~- is one of the simplest known polyatomic mol- 
ecules and has been the subject of many theoretical and experimental investigations. 
Because of its light mass, large-amplitude internal motion is important, even at 
relatively low energies. That this is so can be seen from the potential-energy surface 
of Schinke, Dupuis and Lester (SDL) for the ground electronic state 1A'~ [12]. The 
minimum-energy configuration corresponds to an equilateral triangle (oblate sym- 
metric top). Yet at energies of about 13 000 cm-1 above the potential minimum, H~ 
may become coUinear (prolate symmetric top). The flatness of the potential at these 
energies results in very-large-amplitude internal motion in which the system can 
access all possible triangular and collinear geometries so that permutation of the 
hydrogen nuclei is a facile process. With increasing energy, the H~ system becomes 
localised at obtuse isoscelles configurations, with hindered internal rotation of the 
diatomic, analogous to a van der Waals atom-diatom complex. At an energy of 
about 39000cm -1 the molecular ion dissociates into H2(1~ -) and H +. For com- 
parison, the calculated zero-point energy for H~ on this surface is about 4330 cm-1. 
Large-amplitude motion is therefore expected to be important in H~, even at low 
degrees of vibrational excitation. As a result of the simplicity of the H~ ion, several 
very accurate ab initio potential-energy surfaces are available [12-15]. Calculations 
on H~" should therefore provide a benchmark by which to compare different 
approaches to the treatment of large-amplitude motions in non-rigid molecules. 

The first and most extensive calculation of the rotational-vibrational spectra of 
H~- was made by Carney and Porter [13, 16, 17]. Vibrational energies and wave- 
functions were calculated by expanding Watson's form of the Eckart Hamiltonian 
for nonlinear molecules in a basis set of 220 harmonic-oscillator product functions. 
These calculations concentrated on the low-lying vibrational states. The higher 
vibrational-rotational states have been more accurately converged in the calcu- 
lations of Tennyson and Sutcliffe [6]. In this study the basis functions were not 
adapted to the full symmetry group of D3h, but a large set of basis functions (880 
functions for d = 0 calculations) was used in order to ensure convergence to at least 
1 cm-1 or better. In recent calculations [15, 18-20] the availability of more accurate 
potential-energy surfaces has improved the agreement between the calculated funda- 
mental vibrational frequencies and the experimentally derived values. 

Previous calculations using hyperspherical coordinates of the bound-state 
dynamics of triatomics have been limited to the purely vibrational eigenstates. Frey 
and Howard [10, 21] have calculated the vibrational levels of inert-gas and 
molecular-hydrogen trimers by expanding the angular wavefunction in hyper- 
spherical harmonics. These functions are eigenfunctions of the kinetic-energy oper- 
ator and therefore have the correct asymptotic behaviour at the symmetric-top 
singularity present in the J = 0 Hamiltonian. However, in bound states of a molecu- 
lar system, where the potential energy is comparable to the kinetic energy, a large 
basis set of hyperspherical harmonics is necessary for adequate convergence. Addi- 
tionally, there are difficulties in extending this approach to states with non-zero J 
since the angular basis functions must also have a defined asymptotic behaviour at 
the collinear geometry where the internal Hamiltonian for J ~ 0 is undefined. 
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1004 P. Bartlett and B. J. Howard 

Closed analytic expressions for the hyperspherical harmonics for non-zero total 
angular momentum are unknown. 

Hyperspherical coordinates have also been used in a recent calculation of the 
vibrational eigenstates of H~- [22]. A product basis set of one dimensional functions 
together with successive diagonalisation and truncation was used to generate accu- 
rate vibrational levels. An alternative body-fixed hyperspherical coordinate system 
[23] was used. This differs principally from the present hyperspherical system in 
that the BF z axis is defined in the plane of the particles. This choice is better for 
systems dominated by near-linear configurations. For zero-angular-momentum 
states, Whitnall and Light developed a method to handle the singularity in the 
Hamiltonian at the symmetric-top configuration. However, for states with a non- 
zero angular momentum, the Hamiltonian has an additional singular off-diagonal 
Coriolis term at the symmetric-top configuration. As a result, the approach of 
Whitnall and Light cannot be applied to non-zero-J states. 

In this article we present an accurate calculation of the vibrational-rotational 
eigenvalues of H~ using the hyperspherical coordinates introduced by Smith and 
Whitten. In the next section we discuss the coordinate system used in this work, its 
symmetry properties, and the form of the molecular Hamiltonian. The orientation of 
the body-fixed axes is labelled by three Euler angles, while the internal radial 
coordinate p describes the overall size of the molecular system and the angular 
coordinates (3, tp) describe its shape. To aid in visualising the molecular motion in 
hyperspherical coordinates, we describe a stereographic projection of the H3 + poten- 
tial at fixed p. We assume that motion along the radial coordinate may, as an initial 
approximation, be adiabatically separated from motion in the angular coordinates. 
In section 3 we describe the expansion of the full wavefunction in a set of adiabatic 
surface functions which are parametric functions of p. We choose the adiabatic 
surface functions as solutions of a fixed-p angular Hamiltonian. In section 4 we 
discuss the basis functions used to diagonalise this angular Hamiltonian and their 
symmetry adaption. The full molecular symmetry is used to reduce the size of the 
present calculation. In section 5 we give a description of our method for obtaining 
the adiabatic surface functions. Section 6 gives the resulting coupled-channel radial 
equations and describes their solution, in the limit of weak coupling, by an iterative 
form of Brillouin-Wigner perturbation theory. Section 7 contains the results of our 
rovibrational calculations on H~- and section 8 gives our conclusions. 

2. Hyperspherical coordinates and the molecular Hamiltonian 

The hyperspherical coordinate system of Smith and Whitten [8] has been 
described in detail by Johnson [9], so we give here only the details necessary to 
understand our calculations. 

The hyperspherical coordinates are defined in terms of the mass-scaled [24] 
Jacobi vectors r k and R k, where r k is the scaled vector from atom i to a tomj and R k 
is the scaled vector from the centre of mass of diatomic /j to atom k. The hyper- 
spherical coordinates divide into two sets: the internal coordinates (p, 3, tp), which 
determine the size and shape of the triangle formed by the Jacobi vectors, and the 
external coordinates (~t, t ,  ~,), which specify the orientation of the BF axis system. 
The Euler angles are chosen so that the BF z axis points in the direction of the 
vector product r k x R k while the BF y axis is parallel to the larger of the two 
in-plane instantaneous moments of inertia, with an absolute sense determined by the 
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Rovibrational states of H~ 1005 

set of internal coordinates (p, 0, tp). The BF axes are a system of instantaneous 
principal axes in which the moment-of-inertia tensor is diagonal, with the elements 

Ixx = / t p  2 sin 2 O, 
/ 

I .  #p2 cos 2 0,~ (1) 
/ 

Izz 12p 2, J 

such that I . .  > / I . / >  Ixx. Only for molecular configurations with the equilibrium 
geometry are the hyperspherical body fixed axes (x, y, z) identical with the conven- 
tionally defined Eckart principal axes (a, b, c). As the molecule vibrates, the hyper- 
spherical axes rotate smoothly, following the intantaneous axes of inertia, in 
contrast with the behaviour of the Eckart axes, which are fixed by the equilibrium 
molecular geometry. The three internal coordinates are defined by the components 
of the mass-scaled Jacobi vectors in the BF axis system, namely 

= p cos 0 cos ~o, ] 

= -p  sin 0 sin q~' l (2) 
R k = p cos 0 sin r 

R k = p sin 0 cos q~ 

with coordinate ranges 

0 ~ < p ~  oo, 0 ...< 0 ..< �88 0 ~< q~ ~< 2n, (3) 

and a volume element 

dr' = �88 sin 40 sin ~ dp dO d~0 d~t d~ dy. (4) 

The range of tp spans configuration space twice since the two sets of coordinates (p, 
0, tp, ~, p, ~) and (p, 0, tp + n, ~t, p, ~, + x) refer to the same physical arrangement of 
particles but referenced to the two possible BF axis systems, which differ only in the 
absolute sense of the x and y axes. This duplication ensures the motion of the 
instantaneous BF axis system is always continuous and, as shown by Pack and 
Parker [23], avoids discontinuous half-integral angular-momentum functions of ~p. 

The Hamiltonian operator in hyperspherical coordinates is [25] 

Ht = ~2 1 0 5 ~ ~2 F 1 0 A 1 02 ] 
21tpS-~p p Op 2~-p2 [sin 40 ~0 sin40 + -  cos 2 20 ~ 2  

+ AJ2x + BJ~ + CJ2z ih 2 sin 20 
ltp 2 cos 2 20 Jz ~ + V(p, 0, q~), (5) 

where the Ji (i = x, y or z) are the BF components of the total-angular-momentum 
operator (in units of h), 

A = h2/(21up 2 sin 2 0), B = h2/(2pp 2 cos 2 0), C = h2/(2pp 2 cos 2 20), 

and /t is the three-body reduced mass (/t 2 = mtm2 m3/(mx + m2 + m3)). We note, 
following (3), that the 'rotational constants '  A, B and C satisfy the inequalities 
A I> B and C >i B. It is convenient to rewrite (5) in the form 

H ' =  Tp. + T~ + 7"r + T~ + V(p, O, ~o) (6) 
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1006 P. Bartlett and B. J. Howard 

where each consecutive line of (5) is identified with the terms above: Tp, the radial 
(p), T~ the angular (~, ~0), T~ the rotational, T~ the Coriolis kinetic-energy operators 
and V(p, ~, ~p) the molecular potential. In the later discussion we shall find it useful 
to subdivide the rotational kinetic-energy operator T~ into the symmetric-top 
portion 

T~y m = �89 + B)(J  2 - d~) + CJ~ (7) 

and the (remaining) asymmetric-top portion 

Tasy = �89 --  B)(Jax --  J~). (8) 

We note that T~ is not the normal asymmetric-rotor kinetic-energy operator since, 
although A = h2/2I=, and B = h2/2Iyy,  C ~ h2/2Izz .  Similarly, the 'rotational 
constants' defined above do not follow the expected order A i> B >/C. Eckart [26] 
showed that such anomalous' rotational constants' are a consequence of using a BF 
instantaneous principal-axis system. In such a system the Coriolis terms, describing 
the interaction between rotational and vibrational motions, are of a larger order of 
magnitude than those due to rotation alone. If the off-diagonal Coriolis terms are 
included into a diagonal effective kinetic-energy operator then, as Van Vleck [27] 
showed, the usual rigid-rotor expression is obtained for the purely rotational term. 
In later work Eckart [1] abandoned the instantaneous-axis system in favour of 
fixing the molecular axes by the equilibrium moments of inertia. This choice mini- 
mises the magnitude of the Coriolis terms. 

The Schr6dinger equation may be transformed in order to simplify the differen- 
tial terms in p. On defining the transformed wavefunction ~b as 

~h = p5/2 ~, (9) 

where ~ is an eigenfunction of the untransformed Hamiltonian operator H', (5), the 
Schr6dinger equation for g, becomes 

H~ = E~,  (10) 

where the transformed Hamiltonian operator is given by 

H = p S / 2 H ' p -  5/2. (11) 

After this transformation, the Hamiltonian operator may be written as 

where 

n = ~ + T. + T~ + Tr + V(p, ~, ~0), (12) 

Tp= 2/z 

and T~, T~ and T~ are as in (5). The transformed volume element is 

dv = �88 sin 4~ sin fl dpd~drp da dp d~. (13) 

This Hamiltonian is the one used in the remainder of this paper. 
The rotational-vibrational levels of H~ may be labelled according to the irre- 

ducible representations of D3h, which is isomorphic with $3 • {E, E*}. The effects 
of the permutation-inversion operators of O3h are easily derived using the defini- 
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Rovibrational states of H~ 1007 

tions above and those given by Johnson [9]. In the representation of the symmetric 
group $3 a passive convention is used in which atomic labels rather than atomic 
coordinates are permuted. 

The external coordinates (~, fl, ~,) are unaffected by the operators E, (123) and 
(132), while the pairwise permutation (il) is equivalent to a rotation of n about the 
BF y axis: 

= n - - f l  . ( 1 4 )  (03 [~_,J  

The space-fixed inversion operator E* is equivalent to a rotation of n about the BF 
z axis and a change in the sense of all axes: 

E* = B �9 (15) 

The internal coordinates (p, ~) are unaffected by any of the operators of D3h, while 
the kinematic angle ~o exhibits the following behaviour. 

(12)~0 = - ~0, ] 

/ ( 1 3 ) ~ o = - ~ o -  ~n, 
(23)q~ = -~p + ~n,~ (16) 

/ 

In hyperspherical coordinates 0 = �88 describes equilateral triangular configur- 
ations, while for 0 = 0 the three atoms are coUinear. The angular dependence of the 
molecular potential at fixed p may be visualised by using a stereographic projection 
of the upper surface of the sphere covered by the spherical polar coordinates ~' = �89 
- 2 0  and q~ = 2 g -  2~0. A point in this plot with Cartesian coordinates x and y 

corresponds to the internal configuration (0, ~o), where 

x = tan (�88 - 0) cos 20, "~ 
(17) 

y - tan (�88 - ~) sin 2q~. J 
[ 

There is only one point on the projected plot corresponding to each internal con- 
figuration so the mapping is unique. Furthermore, each molecular permutation is 
equivalent to a rotation of the plot about the z axis without distortion. 

Stereographic projections of the H~ potential of Schinke, Dupuis and Lester at 
three fixed values of p are shown in figure 1. The dashed circles show curves of 
constant 0 at 5 ~ intervals, with the central point on the projection corresponding to 
the equilateral triangle configuration ~ = �88 In figure 1 (a) the angular form of the 
potential is shown at p = 1.2A, close to the absolute minimum in the potential 
~ = 1-151 A, ~9 = �88 Motion along the contours is approximately parallel to ~ 
while motion perpendicular to the contours is approximately parallel to ,9. It is clear 
that at small p the motions along the internal coordinates ,9 and q~ are largely 
separable. In fact, at 0 = �88 0 and q~ are totally separable, since for an equilateral 
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1008 P. Bartlett and B. J. Howard  

# I f % ,, ; , i ", \ \ 
i i \ ' 

i i z 

(r 
Figure 1. Stereographic projections of the H~ potential of Schinke et al. [12] at p -- 1.2A 

(a), 1.7A (b) and 2.0A (c). The solid contours are at intervals of 1000cm -1 in (a) and 
(b), and 500cm-1 in (c). The lowest contour corresponds to potential energies of 
2000 crn- 1 (a), 14 000 cm - 1 (b) and 22 500 era- 1 (c) above the potential minimum. The 
broken circles depict lines of constant ~, in 5 ~ intervals, with the equilateral geometry 
(0 = 45 ~ at the centre of the projection. 

geometry all axes in the plane of the atoms are principal axes of inertia. Motion in tp 
is equivalent to a rotation about  the BF z axis, while mot ion in 3 corresponds to an 
internal vibration. At p = 1-7 A the potential surface shows three symmetric angular 
minima at obtuse isocelles geometries separated by saddle points at acute isocelles 
geometries. At p = 2.0,~ the angular minima has shifted to still smaller values of 
and the barrier to interconversion has increased considerably. Within each of the 
three channels, mot ion parallel to the contours describes hindered rotation of the 
diatomic in the a tom-d ia tom complex, while mot ion perpendicular to the contours 
is largely vibration of the diatomic. At large p, as the plot of figure 1 (c) shows, 
motion along the internal angular coordinates 9 and tp is strongly coupled. 

3. The wavefunction in hypersphericai coordinates 

Without  loss of generality, the eigenfunctions of the transformed Hamiltonian 
(12), for a given total angular momentum J,  M (space-fixed component  of J) and 
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Rovibrational states of H~ 1009 

symmetry F, may be expanded in the form 
Nt 

g,,Mr _ E p), (18) 
t 

where fl refers to the set of angular coordinates (~, t ,  y, ~, ~o) and the functions 
depend parametrically upon the radial coordinate p. Implicit in this expansion is the 
belief that only a few adiabatic states t need be considered for a good description of 
nonlinear triatomics such as H~-. This assumption is considered in greater detail in 
section 6. We choose the adiabatic surface functions ~, used as basis functions here, 
as solutions of the five-dimensional Schr6dinger equation in the internal coordinates 
(~, ~o) and the Euler angles (~, t ,  y): 

[ ] r , +  + + 0, e / " r ( e ; v )  = (19) 

where the kinetic energy and the molecular potential are evaluated at a fixed radial 
value p. Here T, is the internal angular (~, q~) kinetic energy, T~ is the rotational 
kinetic energy and T~ the Coriolis terms defined in (12) and (5). As we shall show in 
section 4, the solutions to (19) may be written in the form 

= Ck,,,,,(p)Yk,,,,, (f2), (20) 
kvm 

where the symmetrised angular basis functions are given by 

~.s~r(f2)= _ 1  [2~+1 l'/2rs qg' 
u  oiJ ' 

x I'O~k(~, t ,  y)e -,v, + ( _  1),+,+,Off_,(~, t ,  y)e,V~,]. (21) 

In the expansion (20) the values of the angular-momentum quantum number k and 
the kinematic quantum number v are restricted by the state symmetry F. In (21), 

J *  DMk is the unnormalised Wigner D matrix, defined following the conventions of 
Brink and Satchler 1-28], fsvm is the normalised ~ function introduced in the next 
section and CkSr~(p) are the expansion coefficients. 

The angular surface function ~(t2; p) transforms as one of the irreducible repre- 
sentation F of the molecular symmetry group D3h. This group is generated by the 
operators for space-fixed inversion E*, pairwise permutation (12) and cyclic permu- 
tation (123). From the fact that the space-fixed inversion operator E* only affects T, 
and using (15), we immediately have that the angular basis function ~(t2), defined in 
(21), has the following simple symmetry under inversion: 

E* Hy.~(~) = ( -  1r $'~'~r(~). (22) 

Hence for surface functions �9 of definite parity the k sum in (20) is restricted to 
either all-odd or all-even values of k. Furthermore, the twofold mapping of configur- 
ation space, discussed in section 2, leads to the equality 

~-syr(~, t ,  y, ~9, q9= l~s~r(~, t ,  ~, + zr, 0, q~+ z 0, (23) 

so that k and v in the sum (20) must be both even or both odd, depending on the 
parity of the surface function ~. 

To see the effect of the pairwise permutation, we note from (14) that (12) takes 
J *  Ouk(~, t ,  y) into 

D~(0t + n, n -- t ,  ~ - y) = ( -  1)'+kDff_k(~, t ,  y). (24) 
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1010 P. Bartlett and B. J. Howard 

Table 1. The set of angular basis functions of angular-momentum projection k (e/o labels 
the parity of k and a) and symmetry species F. For non-zero k, v is restricted to the 
values _ I'v], while for k = 0, v may have any one of the set of values Iv]. The 
symmetry of the basis function under pairwise permutation is labelled by ~r. 

Irreducible 
representation Iv] 

F Parity of cr Parity of k n --- 0, 1, 2 . . . .  

A[ e e 6n 
A~ e o 3 + 6n 
A~ o e 6n 
A[ o o 3 + 6n 
E' e/o e 2 _ 6n 
E" e/o o 1 _ 6 n  

Together with the transformation properties of q~, given by (16), pairwise permu- 
tation transforms the productf~vm(~)D~(~, fl, ~)e- iv, as 

J J:~ -ivcp J + k  J:~ J~  (12)fkv,,,(~)OMk(O~, fl, ~)e = (-- 1) ~k,,,,,(~)O,,,_k(O~, fl, ~)e i~. (25) 

The range of k in (20) may therefore be further restricted to non-negative values, For  
k I> 1, the basis functions ~ m  and ~ _  v,~ are different and in general both functions 
must be included in the sum (20). For  the particular case of k = 0, the two functions 
differ only by a phase factor and the summation in (20) may be further restricted to 
positive quantum numbers. The symmetrised angular basis functions transform with 
the character ( -  1)" under pairwise permutation. 

Under the cyclic permutation (123), the only coordinate affected is the kinematic 
angle q~ which transforms into q~ + ~n. Hence angular functions ^sMr Yk~m (f2) with v a 
multiple of three are unaffected by the cyclic permutation (123) and transform as 
one of the two one-dimensional irreducible representations of S 3 , depending on the 
sign of ( - 1 ) ' .  Angular basis functions where v is not a multiple of three form a 
representation of the two-dimensional irreducible representation of $3. Combining 
the transformation properties of the angular basis functions, table 1 shows the 
restrictions on the quantum numbers k and v in the summation in (20) for surface 
functions ~ that transform as the irreducible representation F of Dab. 

4. Adiabatic surface functions: choice of basis set 

The adiabatic surface functions ~(Q, p), which depend parametrically upon p, 
are solutions to the Schr6dinger equation (19) where the effective angular potential 
is the molecular potential V(p, 2, q~) evaluated at fixed p. As is readily seen from 
figure 1 (a), the H~- angular potential at small p is almost independent of q~ so that 
(19) is approximately separable. With an increase in p, figure 1 (c) shows the angular 
minimum shifts from the equilateral geometry at ~ = �88 to a near-collinear 
configuration of ~ ,,~ 0 as the  a tom-dia tom dissociation limit is approached. At 
these large values of p, the motion in the ~ and q~ coordinates is strongly coupled 
and (19) is highly non-separable. Because of the large change in the nature of the 
adiabatic solutions ~(f2;p) with p, it is very difficult to choose a basis set that will 
be useful at all values of p. We shall, however, restrict attention to the low-lying 
states of Ha ,  + where the near-collinear geometry (2 ~ 0) is not  significant. We seek 
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R ovibr ational states o f  H ~ 1011 

an expansion of the adiabatic surface functions ~(t2; p) in a set of symmetrised basis 
functions ~([2), which we choose as eigenfunctions of the fixed-p Hamiltonian Ho 
given by 

15h 2 
H o = T, + T~ + T~ + ~ + Vo(P, 0), (26) 

where the kinetic-energy terms are identical with those of (19) and the reference 
potential Vo has the simple form 

2/tp 2 
h2 V0(p, ~) = A + 4~ 2 cos 2 2& (27) 

The angular potential 1/" o (at fixed p) has a minimum at ~ = �88 and is independent 
of q~. With increasing ~, the wavefunction is localised at ~ = �88 The similarity of the 
small-p H~- potential and the reference potential 1Io ensures that only a few terms 
need be considered in the surface wavefunction expansion (20). At larger p, as the 
amplitude of the wavefunction at ~ = 0 increases, the convergence is expected to be 
slower. 

With increasing ~, the basis functions ~(f2) are localised near ~ = �88 To con- 
sider behaviour of the basis function ~(f2) at ~ near �88 we rewrite the kinetic-energy 
portion of (26) as 

h 2 1 d sin 4~ + + �89 + B)(J 2 -- j2) 
Ti = 2 - ~  sin 43 a9 cos 2 2~ ff~-~2 

\ ih 2 sin 2~ 
+ CJ  2 + �89 -- B)(J 2 -- J~) -- Itp2 cos2 29 J~ d--~' (28) 

where T~ = T~ + T~ + T~. Here the coefficient of the asyrmnetric-rotor-like term is 

h2 ( 1 1 ) h2 cos 20 q (29) 
�89 - B) = 4/~p'------ i sin~ ~ cos -2 ~ - / z p  2 sin 2 2~" 

For ~ ~ �88 this last term becomes small and we shall neglect it in deriving the form 
of the basis functions. In this limit there is no coupling between the different com- 
ponents of the angular momentum along the BF z axis. Note, however, that at the 
collinear geometry (,9 ~ 0) this term is divergent. The angular momentum J is now 
coupled to the BF x axis, and all possible components - J  ~< k ~< J of the angular 
momentum along the BF z axis, consistent with the molecular parity, are strongly 
mixed. In such a case the present embedding of the body-fixed axes is inappropriate 
and it is much simpler to redefine the BF z axis so it lies in the molecular plane. 

The reference potential Vo(p, ~) is independent of q~ and consequently the 
Schrfdinger equation corresponding to the Hamiltonian operator H o (neglecting 
the asymmetric rotor terms of (28) and (29)) is separable. The unsymmetrised solu- 
tions may be written as 

_ _ / 9  t -4- 1\1/2 

where v is the eigenvalue of the kinematic angular-momentum operator - i  ~/~q~ 
and the rotation matrix [(2J + 1)ll2/4x-ID~k is the normalised symmetric-top wave- 
function for total angular-momentum quantum number J with components k and 
M along the BF and SF z axes respectively. Substitution of the wavefunction 
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1012 P. Bartlett and B. J. Howard 

expansion (30) into the Schr6dinger equation for the Hamiltonian operator (26) 
gives the following equation for the functions f :  

I h 2 1 d sin 40 d h 2 
- 2gp  2 sin 4~ d~ d-O + 21zp 2 cos 2 2~ @2 + k 2 _ 2kv  sin 2~) 

} + [J (J  + 1) -- k a] + Vo(p, 0) - EkSvm(p) fk~vm(/)) = 0. (31) 
/tp z sin 2 2/) 

The effective angular potential in (31) is singular at both the equilateral (0 = in)  and 
collinear (0 = 0) configurations. Since the eigenvalues of the Hamiltonian operator 
(26) must remain finite for wavefunctions localised either at 0 = i n  o r / )  = 0, the 
asymptotic forms of valid solutions are determined by the singularities in the 
effective-potential terms. For 0 near i n  (31) may be approximated by 

- 2/tp -----'~ sin4/) cl-/) sin 4/) - -  + nSvm fks, m(0) = 0, (32) d/) COS 2 20 _JJa-,.14' 

where only the divergent terms have been retained. Equation (32) is simply solved 
and the/) = �88 asymptotic limit of the function f(0) is given by 

f~,m(/)) "~ cos v 2/) P~")(cos 4/)) as /) --* in ,  (33) 

where the index p = 1�89 - k) l and P~'  p) is a Jacob�89 polynomial [291 of degree m. 
The eigenvalue nSo,, is given by 

nksom = (4m + I v -- k l)(4m + I v -- k l + 4). (34) 

Similarly, in the limit of small 0 the asymptotic form of the function f(0) is the 
solution of the equation 

{ h2 [ 1 d d 2 [J (J- I -1) -k  2] ]}a_.ofs (/))=0" 
-- 2 - ~  sin 40 d/) sin 40 d---~ - sin 2 2/) + nks'm (35) 

Equation (35) has solutions 

fkSom(0) ,-, sin q 20 P~'  q)(cos 4/)) as 0 ~ 0, (36) 

where the index q is given as 

q = {�89 + 1) -- k23} '/2 (37) 
The corresponding eigenvalues are given by nS~. = 16(m + �89 + 1 + �89 

Combining the asymptotic forms off(0),  valid a t / )  = i n  and 0, the solution of 
(31) may be written as 

fs~m(/)) = cos v 2/) sin s 2/) O~m(O), (38) 

where 9kSom is a well-behaved function of/). In the limit of large ~, with the substi- 
tution of (38), (31) becomes analytically soluble, and the normalised 0 portion of the 
unsymmetrised basis function Y(t2) is given by 

fJvm(/)) = 4r r ( m  + 1) 1 '/2 
r ( m  +-p + 1)J cos" 20 sin s 20 

x exp ( - �89  cos 2 2/)) L~(~ cos 2 20), (39) 

where L~ is an associated Laguerre polynomial [291 of degree m. In figure 2 the 
angular form of this function is sketched for low polynomial degrees. In the limit 
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Rovibrational states of H~ 1013 

Figure 2. 

4o , 1~o ; ~o So 45o 1 t (a) / ~  

(c) 

Angular dependence of the basis functions f~m(,~) for m ---- 0 (a), 3 (b) and 5 (c). The 
functions correspond to the state J -- 1, k = 1 and v = 3, with ~ = 25. 

-~ oo the functions f(~) form an orthonormal set in ~ with respect to the volume 
element ~ sin 4& The energy spectrum of the reference Hamiltonian Ho is equi- 
spaced, with eigenvalues 

h 2 
E~vm(P) = 2 - ~  (A + 4~- -- 8~(p + 1)) + 4h---~-2 ~m. (40) gp2 

The normalised angular basis functions Y(fl) given by (30) and (39) may be sym- 
metrised by standard techniques [30]. Specifically, for each irreducible representa- 
tion F, we construct the projection operator 

~r = ~ ~or(R)~ (41) 
R 

where R is one of the symmetry operators of D3h, Or(R) is the character of R in F 
and the sum extends over all symmetry operators of D3h. By applying the projec- 
tion operator ~r, for each irreducible representation F of D3h, to the 
unsymmetrised basis function Y(Q), we generate the symmetry-adapted basis func- 
tion ~(~) given in (21) together with the symmetry properties summarized in table 1. 

The symmetrised basis functions ~(Q) constitute nearly ideal functions for the 
expansion of the surface functions #. They are orthogonal and complete (in the limit 
of an infinite set and ~ ~ oo). All matrix elements between these functions are finite 
at the equilateral geometry (~----�88 and they have simple symmetry properties. 
However, there are several difficulties, some of which are easily overcome, in using 
these functions. First, for finite values of ~ the set of symmetrised basis functions 
~(12) is not strictly orthonormal, although, as we shall show in section 5, the appro- 
priate overlap integrals may be simply evaluated. Secondly, the basis functions do 
not have the correct limiting behaviour near ~ = 0, which may lead to unpredictable 
errors if there is a significant wavefunction amplitude at this point. This problem 
arises because the basis functions are symmetric-top eigenfunctions with a defined 
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1014 P. Bartlett and B. J. Howard 

angular-momentum component along the BF z axis. At 3 = 0 the Eckart singularity 
in the principal-axis Hamiltonian (12) requires a coupling of all possible com- 
ponents of the angular momentum along the BF z axis. Any basis function with a 
defined value of k will have the incorrect asymptotic behaviour at 3 = 0. However, 
the basis functions defined above decay sufficiently fast for small 3 to ensure that all 
matrix elements remain finite. This has the advantage of ensuring numerical stabil- 
ity, although for potentials with a significant wavefunction amplitude at 3 = 0 con- 
verged eigenvalues are difficult to achieve. 

5. Adiabatic surface functions: matrix elements 

The surface functions �9 are adiabatic; that is, they depend parametrically upon 
p. Thus, when the surface functions are expanded in terms of the symmetrised basis 
functions ~(t2), the coefficients c are functions o fp  (see (19) and (20)). Substitution of 
the wavefunction expansion (20) into the Schr6dinger equation gives the standard 
matrix equations for the coefficients c in the form 

E ((~ksSrlHal i>ks~r') - uSr(p)(~syrl ~ks~r'))cSr;m'(P) = 0 ,  (42) 
k'v'm" 

where, with terms defined as in (12), 

15h 2 
= ~ + V(p, 3, tp). (43) H a T~+ T~+ Tr + 8/zp 2 

The matrix elements of the Hamiltonian H a are described below according to their 
origin. 

The matrix elements of the angular kinetic energy T a, the Coriolis terms Tr and 
the symmetric-top part of T~ are obtained from (21), using the properties of Laguerre 
polynomials, as 

g su r  
- - k v m  I Ta "JI- Ysy m "~- T~I r 

{ -- 2/tp2 6kk'6vv' 4[(m' + 1)(m' + 2Xm' + 2 + pXm' + 1 + p ) ] l / 2 S m ,  m,+2 

+ 4(2q + 0[(m' + 1Xm' + 1 + p) '] l /2Sm, m,+l  

+ 4[q 2 -- 2m'(m' + p) + (~ -- 1X2m' + p + 1) - 1]Sin, m' 

+ 4(~ -- 2q)[m'(m' + p)]t/zS.,.,_ 1 

+ 4[m'(m' - 1)(m' + pXm' + p - -  1)]l/2Sm, m,- 2 

2kv(fS, m [ 1 -- sin 23 } + 
cos2 23 If~m')  , (44) 

here the 3-overlap integrals Sin,, are given by ( f ~ m  [ f~m,),  and the indices p and q 
are defined following (33) and (37). With the substitution x = ~ cos 2 23, the overlap 
integrals Sin,, may be written in the form 

[ F(m+l)F(m'+l) 1'/2fr ( ~)" S.m, = 16~ r(m + p + 1)r(m' + p + 1)3 x p 1 - e-XL~(x)L~,(x) dx. (45) 

For large values of ~, corresponding to a deep minimum at 3 = i n  in the reference 
potential Vo(p, 3) of (27), the upper limit of the integral may be replaced by infinity 
without appreciable error. In this case expansion of the term (1 - x/O q in powers of 
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Rovibrational states of H f 1015 

x and the use of the result derived by Tennyson and Sutcliffe I4] of 

f: I 'u,  = e-~xP+'L~,(x)L~(x) dx 

=(_ l ) . ,+m,~ ,  ( r ) ~ ) F ( m + p + r - - j + l )  
i=o * +J F(m- - j  + 1) ' (46) 

where m is chosen so t h a t ,  = m' - m is positive, gives S.,.,, in terms of the rapidly 
convergent series 

[ F ( m + l ) F ( m ' + , )  .]x/2 ~r~(q)Fm,r , ,  " (47) 
Smm, = 16~ F(m + p + 1)r(m' + p + 1)J ,~o \ r /  

With a similar simplification, the last term within the braces in (44) may be written 
as 

2kv<f~.,I 1 - sin 23 [ F(m 1)F(m' 1) .q x/2 
cos 2 20 I fS~"> = 32kV~2L + + r im + t, + 1)F(m' + p + 1)J 

['| f / 1  - x \ '  ( 1 - x ' ] ' + l n ] e _ . L = L ~ , d x "  (48) 
x Jo ="- r j j 

This transformed integral may be evaluated efficiently by n-point Gauss-Laguerre 
quadrature based on the zeros of the polynomial LP.(x). 

The asymmetric-rotor kinetic energy T~sy has matrix elements in the symmetrised 
basis set that we may write as 

^ s ~ r  #s~tr \ h2 / 9 I ~ r  COS 20 ~,sMr X 

: --2/tp2 �9 k'r 
<Ykvm IT~yl-k.~,.,,/ ,,-kom ~ ( j 2 +  + j 2 ) l  (49) 

where the BF angular-momentum raising and lowering operators have been defined 
according to the identity 

J•  = Jx -T J , .  (50) 

The change in sign ensures that the BF angular-momentum operators satisfy com- 
mutation relations with the opposite signs to those of the SF operators. With the 
matrix elements of the raising and lowering operators given by 

(O~kl J • I DSMkT- t> = 2• k), (51) 

where 2• k) = [(J + k + 1XJ "~ k)] x/2, one readily finds the asymmetric-top terms 
of (42) may be written as 

<r T.sy I ~qMr" \ = h2 cos 23 *kv. .  -k,v,.,'/ ~ < f s v m l ~ l f k S ' r  

x {[I + (-1y+~+'ako6~o][1 + (--1y+*'+06,,o6r 1/2 

X [2+(J,  k)2+(J, k + 1)b,,,t,,+2 c~v,r 

+ 2_(J, k)Z_(J, k - 1)6k. k_2 6~, r 

+ ( -  1y+k+' ,L(J,  k),L(J, k - 1)ak,. 2_~av. _~,3, (52) 
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1016 P. Bartlett and B. J. Howard 

where the symmetry properties require that we need only consider elements with k 
and k' >/0. We note that the last term in the fmal set of square brackets in (52) is 
zero for all states with k or k' >/2. The 0 integral may be evaluated using the same 
Gaussian methods as for the kinetic-energy terms above. Substitution of the asymp- 
totic small-0 form for the function f, (36), demonstrates that the asymmetric-rotor 
terms remain finite near ~ = 0. 

The angular potential V(p, ~, r with p fixed, is invariant under all the sym- 
metry operations of Dab. The potential may be expanded in the Fourier series 

V(p, ~, ~p) = 2 ~ Vr.(~; p) cos 6nq~ (53) 
n 

where ~'6. is a Fourier coefficient that depends parametrically upon p. With this 
expansion, the potential-matrix elements simplify to 

15h 2 
/-~sMr I V(p, O, ~o) + - -  I -~sMr ,, 
N a k v r a  ! 2ltp z Jt k ' v ' m ' /  

15h 2 
- 6U. 6~,.rmm. + {[1 + (--1)s+k+'fko6,o][1 + (--1)J+k'+ark,Orv,O]} 1/2 

2ltp 2 
J + k + a  x ~ (fksvm I Vr. I fs'v'm')( 1 + 6.o)[66., ~'-, + (-- 1) 66., v'-v 6k, O] (54) 

n 

The integrals are evaluated using the quadrature methods described above, while 
the Fourier coefficients ~'6. are rapidly determined using fast-Fourier-transform 
methods. 

6. The radial wavefunction: inclusion of non-adiabaticity 

The adiabatic surface function �9 depends parametrically upon p. Thus, when the 
expansion of (18) is substituted into the full Schr6dinger equation (10), the resulting 
coupled-channel equations for the radial wavefunction g are of the form 

{d~z + h-~2/~ [E - u~r(p)]}Z~(p) = ~ IYf f(p)  + Xff(p)~p~X~r(p), (55) 

where the non-adiabatic matrix elements X(p) and Y(p) are defined as 

O 
Xff(p) = (~[ur(t2; p)[ - 2 ~pp [ ~Mr(t2; p)), 

(56) 
02 

Yff(P) = (~ur(~2;  P) I -- 0p---~ I r p)), 

with the integration restricted to the set of angular coordinates I2. We seek a 
solution to this set of coupled equations by assuming that motion in the radial 
coordinate p is 'locally separable' from motion in the angular coordinates t2. Cor- 
rections to this adiabatic assumption will be included by perturbation theory. The 
coupled equations (55) are formally identical with the equations for nuclear motion 
in a diatomic molecule within the Born-Oppenheimer approximation, if p is identi- 
fied with the internuclear distance and I2 refers to the electronic coordinates. The 
smallness of the non-adiabatic coupling terms arise in this case because of the 
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Rovibrational states of H ~ 1017 

difference in the characteristic frequencies of electronic and nuclear motion. The 
equations for the nuclear motion, analogous to (55), are only weakly coupled, so 
accurate solutions may be calculated with a perturbative treatment of the non- 
adiabatic terms. However, an adiabatic-type separation is also valid if angular and 
radial motions are of comparable frequencies, provided that the angular wavefunc- 
tion �9 depends only slowly upon the radial coordinate. A weak radial dependence 
of �9 arises if the ratio of the angular kinetic energy to the angular potential energy 
in (19) varies smoothly with the radial coordinate p. Significant non-adiabatic coup- 
ling terms are expected in regions of p where, for example, the minimum of the 
angular potential shifts with p. 

In the isotropic limit of no coupling (V(p, ~, tp) ~ V(p)) the non-adiabatic coup- 
ling terms in (55) must vanish, and the coupled radial equations reduce to the set of 
one-dimensional equations 

+ _ v r(p)] = (57)  

where t~ may be taken as a zeroth-order approximation to the radial wavefunction 
X in (18) and E ~ is the corresponding zeroth-order eigenvalue. The radial Schr6d- 
inger equation (57) can be solved using a variety of methods. We have used the 
Numerov-Cooley finite-element algorithm [31], which is both efficient and accu- 
rate. By analogy with the electronic Born-Oppenheimer approximation, it can 
easily be shown [32] that the zeroth-order energy E ~ is necessarily a lower bound to 
the exact energy of the ground state. If, however, the diagonal coupling term Yt,(P) is 
included in (57), 

+ ~_ [E 1 _ U St(p)] _ ySr(p) tx)ztSr(p) = 0, (58) 

then the resulting energy E ~, which includes terms up to first order in the non- 
adiabatic coupling, is just the expectation value of the full Hamiltonian for the 
approximate' locally separable' wavefunction of the form 

~l~osur = t'}~r(p)~tsur(t~; p). (59) 

From the variational principle, E ~ is rigorously an upper bound to the exact energy 
of the ground state. The energy of the ground state is therefore bounded by the 
values E ~ and E 1. 

The exact solution to the set of weakly coupled differential equations (55) may 
be found by perturbation theory. We have used an iterative Brillouin-Wigner pro- 
eedure, which has the advantage that, compared with the conventional Rayleigh- 
Sehr6dinger treatment, the effects of higher-order terms may readily be included. 
The numerical implementation of this procedure has been described in detail else- 
where [21]. 

Corrections to the 'locally separable' zeroth-order wavefunction require the 
computation of integrals of the radial derivatives of the angular wavefunction ~. 
These non-adiabatic terms may be evaluated either in terms of matrix elements of 
the derivative of the potential [33] or via a finite-difference approach [34]. Here we 
use the latter method for reasons of computational ease. If the angular surface 
function ~(t2;p) is evaluated at the N equally spaced radial grid points Pk = PO 
+ k Ap (k = 0, ... .  N - 1) then the derivative at p = Pro+l/2 may be approximated 
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1018 P. Bartlett and B. J. Howard 

by the central-difference result 

[ ca~t~r(g2 ; p) ] l [ ~ M r ( ~ ; p k + l ) - - ~ z t l ~ r r ( Q ; p k )  ] . (60) 0=,.+.,2-- g 
Substituting this result into (56) gives the non-adiabatic matrix elements in terms of 
the overlap of the angular surface function at neighbouring points of the p grid: 

jr, 1 
x , , ,  = - 

1 d Jr 
Yu'Jr(Pk + t/2) = ~Ap 2 [2~,,,  - Tf f (pk  ) -- T:rt(pk)] + ~ -~p Xt,, (Pk + t/2), (61) 

where the transfer-matrix element T(pk) is defined in terms of the f2 integral: 

Tff(Pk) = ( ~:tr(g2; pk) l ~r(12;  pk + ,)). (62) 

This integral may be calculated efficiently using the quadrature techniques discussed 
in section 5. 

7. Results for H;" 

7.1. Potential-energy surfaces 

Calculations were performed for the configuration-interaction surface of Carney 
and Porter (CP) [13] and the variationally superior surface of Schinke, Dupuis and 
Lester (SDL) [12]. The fitting procedure used by Schinke et al. does not, however, 
ensure that the potential function is totally symmetric. In our calculations the 
potential was symmetrised by the following device. At each value of (p, 3, ~p) the 
three equivalent sets of Jacobi coordinates were calculated. The potential was evalu- 
ated for the coordinate set that maximised the ratio of the proton-H 2 distance to 
the diatomic H 2 internuclear separation, thus ensuring that symmetric geometries 
were always treated equivalently. 

7.2. Vibrational-basis-set selection and convergence checks 

As a first step towards the accurate calculation of the vibrational eigenvalues of 
H~-, the calculational methods described in sections 5 and 6 were optimised. In the 
adiabatic hyperspherical technique there are at least three parameters that can be 
varied: the constant ~ in the angular basis function ~'(f2), which determines the rate 
of decay of the angular amplitude as 3 ~ 0; the size of the angular basis set used to 
represent the adiabatic surface function ~([2; p), and the number of radial channels 
N t, included in the iterative Brillouin-Wigner solution of the coupled radial equa- 
tions (55). The optimum values of these parameters were found by studying the 
convergence of the final energies. Since the form of the angular basis set is different 
for each of the three vibrational symmetries, separate convergence studies were 
required for each symmetry species. However, apart from the number and symmetry 
of the angular basis functions, the optimum values of the other parameters were 
found to be very similar for all symmetries. We shall therefore confine our dis- 
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Rovibrational states of H~ 1019 

cussion to the convergence of the vibrational states of A~ symmetry on the CP 
surface. 

We start by optimising the value of ~. At each value of p, ~ was chosen to 
minimise the lowest eigenvalue of the angular Hamiltonian (43). For the Carney and 
Porter surface, ~ was determined as 

f30.0 (0.54 A ~< p ~< 0-90 A), 
= (25-0 (0.90 A < p ~< 2.06 A). 

(63) 

The effect on the A~ eigenvalues of a small variation in the parameter ~ from its 
optimum value is shown in table 2. The angular kinetic and potential matrix 
elements were evaluated using a 30-point Gaussian-quadrature rule. The Fourier 
coefficients P6,(0; p) were calculated using a 64-point fast Fourier transform of the 
potential V(p, 0, tp). 

Once the optimum value of ~ had been determined, the number of angular basis 
functions Y(I2) to be included in the matrix diagonalisation of the angular Hamilto- 
nian H,  was found in a series of trial conditions. For each symmetry species the 
adiabatic surface function r p) was expanded in the set of angular basis functions 
~m(g2), where for the vibrational states k = 0. The values of the kinematic quantum 
number v in this sum are determined by the state symmetry and are listed in table 1 
as the set + Iv]. The angular basis functions Y0~,~ and Y0-o~, are identical apart from 
a phase factor (see (21)). Hence for states of k = 0 the kinematic quantum number v 
can be further restricted to the set Iv]. In table 3 the optimised angular basis sets are 
listed for the three vibrational symmetries. Convergence checks, detailed in table 4, 

Table 2. Convergence of A'I (J = 0) eigenvaluesi" with respect to ~:~. 

Vibrational state 
(Vl, v2, 12) ~ = ~*w ~ = ~* + 2"5w 

(0, 0, 0) 4345"106 4345"106 
(1, 0, 0) 7529"849 7529"849 
(0, 2, 0) 9133"160 9133"171 
(2, 0, 0) 10603-975 10603-974 
(0, 3, 3) 11668"64 11669-14 
(1, 2, 0) 12115-30 12115.34 

"~ Eigenvalues in cm-1 for CP surface relative to potential minimum. 
Angular basis set described in table 3, 10 non-adiabatic channels. 

w ~* is given by (63). 

Table 3. The angular basis functions used in vibrational calculations. 

Vibrational-state Basis 
symmetry (vn ,  Vm.,)? nr.z ~ size 

A~ (0, 18) 6 28 
A~ (6, 24) 6 28 
E' (-20, 16) 6 49 

t The quantum number v lies in the range vmi. ~< v ~< vmz. 
Maximum degree of Laguerre polynomial. 
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Table 4. Convergence ofA'l (J = 0) eigenvaluesl" with respect to angular basis size:~. 

m ~ ,  vmx w 

28'  

24  

Vibrational state 
(V 1, V2,12) (6, 12) (5, 18) (6, 18) 

(0,~0) 4345.107 4345.107 4345.106 
(1, 0,0) 7529'853 7529-851  7529.849 
(0,2,0) 9133-788 9 1 3 3 - 2 1 7  9133.160 
(2, 0,0) 10603.984 10603.975 10603,976 
(0,3, 3) 11676.13 1 1 6 7 1 . 7 7  11668.64 
(1, 2,0) 12116.30 1 2 1 1 5 . 5 2  12115.30 

1" Eigenvalues in cm- 1 for the CP surface. 
:~ ~ fixed at values given by (63), 10 non-adiabatic channels. 
w Maximum degree of Laguerre polynomial and maximum value of v included in the 

angular basis set. The basis set includes all states 0 ~< v ~< v~x. 

show that the low-lying states are very closely converged ( <  0-01 cm-1), with higher 
eigenvalues being converged to better than 1 cm -  1. 

In the final step of the calculation the non-adiabatic correction terms were 
included via Brillouin-Wigner perturbation theory. The angular Hamiltonian was 
diagonalised for 77 equally spaced values of the radial coordinate p in the range 
0-54A ~< p ~< 2.06 A. Figure 3 depicts the radial dependence of the eigenvalues U(p) 
of the angular Hamiltonian for solutions of A~ symmetry. To achieve energies 
accurate to 0.01 cm-1,  the eigenvalues U(p) and the non-adiabatic matrix elements 
X(p) and Y(p) were interpolated, using the method of cubic splines, onto an equally 
spaced fine grid of 751 points. To complete the calculation and converge the pertur- 

! 
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1020 P. Bartlett and B. J. Howard 

0,6 0.8 10  12  1 4  1.6 18  2.0 

Figure 3. Radial dependence of the eigenvalues u~r(p) of the fixed-p angular Hamiltonian 
for the vibrational states (J = 0) of A'~ symmetry. Calculations are for the surface of 
Carney and Porter. 
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Table 5. 

Rovibrational states of H~ 1021 

Convergence of A'~ (J = 0) eigenvalues1" with respect to number of non-adiabatic 
channels included in iterative Brillouin-Wigner solution:~. 

N,w Rayleigh-Schr6dinger tl 
Vibrational state 

(Vl, V 2,  12) 6 10 E 0 E 1 E 2 

(0, 0, 0) 4345.106 4345 .106  4341.156  4347-503 4345-113 
(1, 0, 0) 7529-849 7529 .849  7536.185  7545 .840  7529.769 
(0, 2, 0) 9133-176 9133-160 9109.439  9148-759 9133-512 
(2, 0, 0) 10603-976 10603.975 10613.445 10632-280 10603.538 
(0, 3, 3) 11669-19 11668-64  11735-43 11811.08 11644-08 
(1, 2, 0) 12115.62 12115-30  12026-93 12100.98 12131.96 

t Eigenvalues in cm- 1 for CP surface. 
:~ Calculation with ~ fixed at values given by (63), and the angular basis described in 

table 3. 
w Number of non-adiabatic channels included in iterative Brillouin-Wigner solution. 
II Results of zeroth-, first- and second-order Rayleigh-Schr6dinger perturbation theory. 

bation solution of the coupled radial equations, an iterative form of Brillouin- 
Wigner perturbation theory was used. Table 5 illustrates the rapid convergence of 
the perturbation calculation with the number of radial channels Nt, included in the 
iterative solution. Ten radial channels ensure convergence to within 0.01 era- ~. The 
zeroth-, first- and second-order Rayleigh-Schr6dinger energies are also given for 
comparison. 

The zeroth- and first-order energies, as discussed in section 6, bracket the exact 
ground-state energy. The small shift of about 4 em-  1 between the zeroth-order and 
exact energies shows that the assumption of an adiabatic separation between radial 
and angular motion is justified. Table 5 shows that the non-adiabatic correction 
terms become increasingly significant as the vibrational energy increases. The 
reasons for this are illustrated in figure 4, where the non-adiabatic matrix elements 
between the ground and first excited A~ channels are plotted as a function ofp. The 
non-adiabatic matrix elements show a sharp peak at p ~ 1.8 A, where the character 
of the angular eigenfunctions changes rapidly. Stereographic projections of the 
potential, similar to figures 1 (b) and (c), show that at this value of p the angular 
minimum shifts from the equilateral geometry towards a near-collinear geometry. 
The high-energy vibrational states sample this large-p portion of the potential- 
energy surface, and hence the non-adiabatic correction terms become more signifi- 
cant. 

7.3. Rotational-basis-set selection 
In H~- the body-fixed z projection k of the total angular momentum is not 

strictly a conserved quantity. Thus at each J and F the matrix representation of the 
angular Hamiltonian has a blocked structure with submatrices (JF I k [ ), diagonal in 
the BF projection quantum number I kl ,  coupled by asymmetric-top matrix 
elements that are off-diagonal in I kl.  Each submatrix ( JF Ik l )  is composed of 
matrix elements of the angular Hamiltonian in the set of symmetrised angular basis 
functions Ylktvm(t2) with k fixed and the kinematic quantum number v limited to the 
symmetry sets +_[v] listed in table 1. The f u n c t i o n s  Ylklvrn and i~l~l_vm are inequiva- 
lent, apart from the special case of k = 0, where they differ by a trivial phase factor. 
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"rE 15 
~o x (#) 

>- 10. 
o_ 

~, 5 '  

• 0 ! . ; -  

~ -5- 

& 
7~ -10- 

-15- 

Figure 4. Radial dependence of the non-adiabatic matrix elements xIr(p) and y~r(p) for 
J = 0 and symmetry F = A~, between the ground-state adiabatic surface function 
~l~ur(t2;p) and the first excited state qr~2ur(g2;p). Calculations are for the surface of 
Carney and Porter. 

For a complete rovibrational calculation both functions must be included in the 
matrix representation (JF I k I ) for non-zero k. 

For states of E symmetry the size of the angular basis set may be reduced by the 
use of an approximate symmetry classification. Equations (44), (52) and (54) demon- 
strate that the matrix elements of the angular Hamiltonian obey the selection rule 
Av = 0 (mod 6), with the single exception of the asymmetric-top kinetic-energy oper- 
ator, which connects the functions ~lklv,~ and YIk'l-v- if k and k' ~< 2. In states of A1 
and A2 symmetry v is a multiple of three, so matrix elements between Ylkl~m and 
gk'l-m satisfy the selection rule Av = 0  (mod6) and are generally non-zero. 
However, for states of E symmetry, where o is not a multiple of three, only 
asymmetric-top terms connect these two functions. In the conventional normal- 
mode description of H~- [35] the two angular basis functions ~lklmn and Ylkl-om 
correspond to rotational levels of different vibrational 12 manifolds, where 12 is the 
vibrational angular momentum quantum number associated with the degenerate 
bending mode v2. Perturbation arguments suggest that the effect of these vibra- 
tional off-diagonal terms will be small consequently we shall ignore them here. With 
neglect of these terms, the submatrix (JF I k t ) may be partitioned into two, with the 
kinematic quantum number v limited to the set + [v] in the upper partition and to 
- I v ]  in the lower partition. 

For the general rovibrational problem the optimum size of the angular basis is 
found by methods similar to those described in section 7.2. Table 6 lists the angular 
basis sets used in the rotational calculations of H~" described below. All other 
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Rovibrational states of H~ 1023 

Table 6. Angular basis functions used in the rovibrational calculations. 

(vm~,, vm,.)~" 
Irreducible 

representation k = 0 k # 0 

A] (0, 18) (-18, 18) 
A~ --:l: (-21, 21) 
A~ (6, 24) (-18, 18) 
A~ --:l: (-21, 21) 
E'(+)~ (--16, 20) (--16, 20) 
E'(--)~ (--20, 16) (--20, 16) 
E"(+)~ --:~ (--17, 19) 
E"(--)~ --:I: (--19, 17) 

i" Minimum and maximum values of the kinematic quantum number v. Laguerre poly- 
nomials of maximum degree six were used in all rotational calculations. 

:~ Symmetry-forbidden. 
w + / -  labels the E states by the approximate symmetry classification described in the 

text. 

parameters were constrained at the optimum values found in the purely vibrational 
calculations described in section 7.2. 

7.4. Vibrational and rotational results 

The vibrational states of H~ are conventionally labelled by the quantum 
numbers (vl, v2, [ 12 I) where v 1 refers to the totally symmetric (A~) vibrational mode 
and v 2 to the doubly degenerate (E') bending vibration. In states where the degener- 
ate vibration is excited, H~- has a vibrational angular momentum about the sym- 
metry axis that takes values of 12 = - v 2 ,  - v 2  + 2 . . . . .  v 2 - 2 ,  v2. The O3h 
symmetry of the vibrational state (v t, v 2, [121) is determined by 12. States of 12 = 
_+ 3, + 6 . . . .  , correspond to A~, A[ pairs, 12 = 0 transform as A~, while all other 
values of 12 belong to E' symmetry representations. For H~ the nuclear-spin 
statistics imply that only rotational-vibrational levels of overall symmetry A2 or E 
are populated. Levels of symmetry A~ and A~ have zero statistical weight. 

Table 7 gives our results for the J = 0 states of H~- of each symmetry species on 
the potential-energy surfaces of Carney and Porter (CP) and Schinke, Dupuis and 
Lester (SDL). The vibrational states of A[ symmetry are not populated, but we 
present them for completeness. We also give the results of the calculation of Carney 
and Porter [13] (using a Watson Hami!tonian) for the CP surface and Tennyson 
and Sutcliffe [6] (using Jacobi coordinates) for the SDL surface. While minor differ- 
ences exist between the present calculations for the SDL surface and those reported 
by Tennyson and Sutcliffe (the E' calculated modes being averaged when perfect 
degeneracy is not achieved), the overall agreement is very good. Our results for the 
CP surface, however, are consistently lower than those obtained by Carney and 
Porter for the same surface. Since we have demonstrated that the low-lying vibra- 
tional band origins are converged to 0-01 crn- 1 or better, this disagreement must be 
due either to a lack of basis-set convergence in the calculations of Carney and 
Porter or an incomplete treatment of the divergent terms that occur in the Watson 
Hamiltonian at linear geometries. 
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Table 7. Vibrational eigenvaluest of H~. 

CPsurface [131 SDLsurface[12]  
Vibrational state 

(Vl, v2,12) This work [13]:~ This work [6]~: 

A~ 

A~ 

E' 

(0, 0, 0) 4345-106 4345.28 
(1, 0, 0) 7529-849 7530-49 
(0, 2, 0) 9133.160 9144.47 
(2, 0, 0) 10603-975 10613-05 
(0, 3, 3) 11668.64 
(1, 2, 0) 12115.30 
(0, 3, 3) 11833.800 
(1, 3, 3) 14576.373 
(0, 5, 3) 15935.02 
(2, 3, 3) 17214.3 
(1, 5, 3) 18245.8 
(0, 6, 6) 19062.211 
(3, 3, 3) 19709"1 
(2, 5, 3) 20533"9 
(0, 1, 1) 6860"607 6861-36 
(0, 2, 2) 9340.464 9349"05 
(1, 1, 1) 9903"916 9913"09 
(0, 3, 1) 11383-0 
(1, 2, 2) 12231-8 
(2, 1, 1) 12835-2 
(1, 3, 1) 14350.4 
(2, 2, 2) 15016-8 

4330.472 
7521.430 
9055.299 

10607.067 
11566.45 
12069-07 
11781.384 
14503.526 
15800.41 
17115.9 
18026.8 

6824.722 
9288-58 
9875.91 

11275.06 
12177-92 
12821-71 

4330.5~ 
7521.6 
9055.5 

10606.8 
11565.5 
12070-8 
11781-8 

6824.9 
9288.7 
9875-6 

11274-4 

t Eigenvalues in era- ~ relative to potential minimum. 
:~ Averaged over degnerate pairs. 
w Corrected zero-point energy. 
I[ Eigenvalue not completely converged. 

Tables  8 and  9 give the predicted ro ta t ional  levels for t h e g r o u n d  state and  the 
first two fundamenta ls  of  H~'. F o r  compar i son ,  the results of  Carney  and Por te r  
[17] and  Tennyson  and  Sutcliffe I6]  are also presented.  The  exper imental  ro ta t ional  
levels of  the g round  state and v 2 = 1 states are determined f rom the spectro-  
scopically fitted pa ramete r s  and  c o m m o n  differences given by  O k a  and col labo- 

Table 8. Rotational eigenvaluest of ground state and the vl = 1 vibration of H~-. 

CPsurface [13] SDL surface [12] 
Rotational 

state Ground state Ground state 
Expt v l = l  

J k sym [36] This work [17]~ This work Tbiswork [6]~ 
v l = l  

This work 

1 1 E" 64"12 63"75 64"30 62"12 64"05 64"05 
1 0 A~ 86"96 86"38 87"24 84"28 86"87 86"87 
2 2 E' 169"27  1 6 8 " 1 8  1 6 9 " 7 8  163"79 169"08 
2 1 E" 237"35 236"22 238"04 230"38 237"09 
2 0 A] 258"18 260"67 251"88 260"24 259"62 

62"70 
84"90 

254"34 

"~ Eigenvalues in cm-1 relative to vibrational origins given in Table 7. 
~/Averaged over degenerate pairs. 
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Rovibrational states of H~ 

Table 9. Rotational eigenvaluesi" of H~ in v 2 = 1 vibration. 

1025 

Rotational level CP surface [13] SDL surface [12] 

J k sym G U s Expt [36] This work This work [6]~: 

1 1 E" 2 + 1 26-73 26.42 27-07 25.8 
1 0 E' 1 +1 88.13 87-62 88.19 87.0 
1 1 A~ 0 - 1  +1 95.28 95.18 94.69 93.6 
1 1 A~ 0 +1 - 1  105.37 105.94 104.8 
2 2 A~ 3 + 1 + 1 91-88 92-0 
2 2 A~ 3 +1 - 1  92-81 91-88 92.1 
2 1 E" 2 +1 202-53 201.36 201.7 
2 2 E' 1 - 1  234.15 233.69 231.0 
2 0 E' 1 + 1 268.93 267.24 268-2 
2 1 A~ 0 - 1  +1 259.32 257.9 
2 1 A[ 0 + 1 - 1  291.45 289-38 290-8 

i" Eigenvalues in cm- 1 relative to v 2 = 1 vibrational origin given in Table 2. 
Averaged over degenerate pairs. 

rators  [36]. The predicted rotat ional  levels of  several over tone  bands  are given in 
tables 10 and 11. The rotat ional  levels have been labelled by the q u a n t u m  numbers  
J and k for non-degenerate  vibrations and J and G = ] k - 121 for degenerate vibra- 
tions. States of  non-zero  k/G that  are a multiple o f  three form At,  A2 pairs. All other  
non-zero  k/G levels have E symmetry.  In  the no ta t ion  in t roduced by Wa t son  [35] 
the rota t ional  levels of  degenerate vibrations may  be further charac tedsed  by the 
value __+ U, which distinguishes upper  and lower componen ts  of  the I resonance, and 
s = + 1, which differentiates the componen ts  of  the symmetry  pair  A t, A 2 for G = 0 
(rood 3). The qua n t um  number  U is defined so that  the equivalent oblate- top 
quan tum number  k is given by k = I G - U I. 

The agreement  between the present calculations and those of  Tennyson  and 
Sutcliffe is seen as essentially exact for the ground-s ta te  rotat ional  levels. However,  
we note that  the present results for the v 2 = 1 manifold differ f rom the calculations 
of  Tennyson  and Sutcliffe by over I cm-1 .  Since both  calculations appear  to be 
converged to better than 0-1 c m - 1 ,  we are uncertain of  the origin of  this discrep- 
ancy. Table  9 does, however, show that  the present results for the v 2 = 1 state are in 
closer agreement  with the experimental values than those reported by Tennyson  and 
Sutcliffe. The rovibrat ional  levels obtained on the C P  surface are consistently lower 

Table 10. Rotational eigenvaluest ofv 1 = 2 and v 2 = 2, 12 = 0 vibrational states of H~. 

Rotational 
state CP surface [13] SDL surface [12] 

J k sym v 1 = 2 v 2 = 2, 12 = 0 V 1 = 2 V 2 = 2, 12 = 0 

1 1 E" 60.49 64.21 64-99 
1 0 A~ 82-21 91.32 82.89 92.21 
2 2 E' 159.35 163.74 
2 1 E" 224.61 246.38 
2 0 A~ 245-71 269.63 248.38 276.04 

t Eigenvalues in cm- 1 relative to vibrational origins given in Table 7. 
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1026 P. Bartlett and B. J. Howard  

Table 11. Rotational eigenvaluest of v 2 = 2, ! 2 = ={-2 and v~ = 1, v 2 = 1 vibrations of H~. 

Rotational level 

J k sym G U s CP surface [13] SDL surface [12] 

v 2 = 2, 12 = + 2 

vl = 1, v2 -- 1 

1 1 A~ 3 + 2  + 1  -4-43 -2.42 
1 1 A~ 3 +2 - 1  -0.95 1.79 
1 0 E' 2 + 2 88.99 89.75 
1 1 E" 1 + 2 128.23 126.40 
2 2 E' 4 +2 31.59 
2 1 A~ 3 + 2 + 1 169.79 
2 1 A~ 3 +2 - 1  179.77 
2 0 E' 2 + 2 266.45 
2 1 E" 1 + 2 305.94 
2 2 A~ 0 --2 +1 291-18 
2 2 A~ 0 +2 - 1  291.35 

1 1 E" 2 + 1 28.55 30.31 
1 0 E' 1 + 1 85.63 86.30 
1 1 A~ 0 - 1 + 1 91.03 89.94 
1 1 A~ 0 + 1 - 1 100.37 100.00 
2 2 A~ 3 + 1 + 1 96.09 
2 2 A~ 3 + 1 - 1 96.23 
2 1 E" 2 + 1 199.42 
2 2 E' 1 -- I 229.77 
2 0 E' 1 + 1 256.26 
2 1 A~ 0 - 1 + 1 252.22 
2 1 A~ 0 + 1 - 1 279.76 

Eigenvalues in cm- 1 relative to vibrational origins given in Table 7. 

than either the experimental values or those given by the SDL surface. The ro- 
tational constants are roughly proport ional  to the inverse square of the equilibrium 
internuclear distance, which suggests that the bond length of the CP surface is too 
high. 

For  the general rovibrational problem the complete inclusion of the asymmetric- 
top terms requires an angular basis set that increases in size approximately as �89 
As discussed in section 1, the embedding of the BF axes in the SW hyperspherical 
coordinate system is expected to minimise these coupling terms for oblate-top mol- 
ecules such as H~'. This suggests that  an angular-momentum decoupling scheme 
may be applicable. The basis of this approximation is the complete neglect in the 
angular Hamiltonian matrix of all off-diagonal (in I kl)  asymmetric-top matrix 
elements. We do, however, retain the diagonal (in I k I) asymmetric-top elements for 
the level I k I = 1, i.e. the last term in the final set of brackets in (52). At each J and F 
the angular Hamiltonian is now partitioned into the smaller submatrices ( J F I k l )  
labelled by the diagonal quantum number  I k l. In table 12 we list a direct compari-  
son between the exact and decoupled results for H~- J = 2 levels of E' symmetry. 
These trial calculations suggest that  neglect of the Coriolis interactions is a reason- 
able approximation for most  rovibrational levels, with the decoupled energies differ- 
ing from the exact energies by less than about  2cm-1 .  Previous calculations [37] 
have highlighted the failure in H~" of a rotational-decoupling approximation for BF 
coordinate systems aligned with the z axis in the molecular plane. As pointed out 
above,  this choice results in a maximum coupling of the various BF angular- 
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Table 12. 

Rovibrational states of H~ 1027 

J = 2, E' rotational levelst of H~ calculated on the CP potential surface. Com- 
parison of the results of fully coupled and decoupled calculations. 

Rotational level 
Vibration 
(el, V2,/2) J k G U Fully coupled~: Decoupledw 

(0, O, O) 2 2 2 4513"289 4513-566 
(0, 1, 1) 2 2 1 --1 7094"293 7100"259 
(0, 1, 1) 2 0 1 + 1 7122"864 7123"022 
(1, O, O) 2 2 2 7693-634 7693"883 
(0, 2, O) 2 2 2 9296"902 9298"431 
(0, 2, 2) 2 2 4 + 2 9372"299 9372"026 
(0, 2, 2) 2 0 2 +2 9608"712 9606"914 
(1, 1, 1) 2 2 1 --1 1 0 1 2 9 " 1 5  10133-682 
(1, 1, 1) 2 0 1 + 1 10164-013  10160-370 
(2, O, O) 2 2 2 10763"325 10763"548 

t Eigenvalues in cm-1. 
Results for the fully coupled calculations. 

w Results for complete neglect of off-diagonal Coriolis interactions. 

momentum components, and the agreement found between exact and decoupled 
rotational energies is correspondingly poor, with differences of up to about 50 cm-  1 
[37]. Relatively accurate calculations of highly excited rotational states may there- 
fore be feasible in hyperspherical coordinates with the use of a decoupling approxi- 
mation to reduce the size of the calculation. 

8. Summary and concluding remarks 
In this paper we have presented a method for performing rovibrational calcu- 

lations in triatomic molecules with large-amplitude internal motions. Our approach 
uses an adiabatic separation of radial and angular motions in the symmetric hyper- 
spherical coordinate system introduced by Smith and Whitten [8]. For ro- 
vibrational levels of total angular momentum J and symmetry F, the eigenfunctions 
of the angular Hamiltonian are expressed in terms of symmetrised products of 
angular-momentum eigenfunctions and hyperspherical basis functions. The behav- 
iour of the angular Hamiltonian at those critical configurations where some of the 
hyperspherical coordinates are undefined fixes the asymptotic form of the hyper- 
spherical basis functions. The radial wavefunction is defined by a set of coupled 
differential equations, which in the limit of weak coupling may be solved by an 
iterative form of BriUouin-Wigner perturbation theory [21]. In principle, this 
method is exact. 

We have applied this method to a calculation of the low-lying rovibrationat 
states of H~-, a molecule chosen largely because of its large-amplitude internal 
motion. Previous calculations made by, for example, Carney and Porter [13] and 
Tennyson and Sutcliffe [6] have used very large numbers of basis functions to 
ensure adequate convergence. One reason for the large basis sets in these calcu- 
lations is the use of C2v rather than the full O3h symmetry of H~-. In hyperspherical 
coordinates the full permutation-inversion symmetry may be relatively easily intro- 
duced and used to reduce the size of the calculation. In addition to increasing 
efficiency, the use of the full D3h symmetry in our calculations gives unambiguous 
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1028 P. Bartlett and B. J. Howard 

rovibrational state assignment, which is often uncertain in highly excited states 
represented by basis sets of only C2v symmetry. 

Our results demonstrate, for H + the accuracy and efficiency of an adiabatic 3, 
representation in hyperspherical coordinates. The present results for the SDL 
surface are in very good agreement with the variational calculations of Tennyson 
and Sutcliffe, although the present calculation uses appreciably smaller basis sets. 
Comparison of the present results with the results of Carney and Porter for the CP 
surface show significant deviations for vibrational-overtone energies. The discrep- 
ancy increases with vibrational energy, indicating that these states were not fully 
converged in the calculations of Carney and Porter and demonstrating the difficulty 
in representing the high vibrational states of H~ in terms of normal-mode harmonic 
basis functions. 

In the present perturbative treatment of non-adiabatic radial-angular coupling 
the zeroth-order energy E o is rigorously a lower bound to the exact ground-state 
energy. Comparison with the full BriUouin-Wigner result, in which all non-adiabatic 
coupling terms are retained, shows the accuracy of an adiabatic separation of radial 
and angular motion for the ground state of H~-. Inclusion of the non-adiabatic 
correction terms into the ground-state energy causes an energy shift of only about 
0-1%. However, in highly excited states this adiabatic separation is found to be less 
appropriate. Attempts to converge states even halfway to dissociation failed. In this 
region the non-adiabatic matrix elements are significant, which, together with an 
increased density of rovibrational levels, leads to an instability in the iterative 
Brillouin-Wigner perturbation series. The non-adiabatic matrix elements peak at 
around p = 1.8 A, where the angular-potential minima shifts most rapidly from an 
equilateral geometry found at small p to the atom-diatom dissociation limit appro- 
priate at large p. The present calculations show that the non-adiabatic matrix 
elements are small at large values of p. An adiabatic separation may therefore be 
appropriate for rovibrational states in the vicinity of the dissociation limit where the 
large-p portion of the potential is essentially probed. Rovibrational calculations in 
this region, which might explain the fascinating experiments of Carrington and 
co-workers 1-38], would be extremely difficult in the present set of hyperspherical 
coordinates. A more suitable choice would be the symmetric hyperspherical coordi- 
nates introduced by Pack [23], in which the BF z axis lies in the molecular plane. 

Finally, in the Smith and Whitten hyperspherical coordinate system the body- 
fixed axes adjust smoothly as the molecule vibrates, with the z axis perpendicular to 
the molecular plane. This choice is optimum for an angular-momentum decoupling 
approximation in oblate-top molecules. Tests of this approximation for the low 
rotational states of H~- demonstrate good agreement (to within 2 cm-1) with exact 
rovibrational calculations. This suggests that the calculation of high rotational 
states may be feasible in hyperspherical coordinates if an angular-momentum 
decoupling approximation is used to reduce the size of the calculation. 
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