Diamond Thin Films: A 21st Century Material. Part 2: A New Hope

Table S1. Some suppliers of diamond gems, HPHT, CVD diamond substrates and nanodiamond powders. Many more Chinese suppliers can be found in Ref. [1].

Supplier	Country	Diamond product	Ref.
Element Six, Ltd	UK, USA	CVD substrates, HPHT	[2]
Audiatec (Augsburg Diamond Technology GmbH)	Germany	Freestanding CVD diamond plates	[3]
DiamFab	France	CVD diamond films	[4]
Ceratonia	Germany	Diamond grit, CVD substrates	[5]
Lightbox	UK	Gems	[6]
Yorkshire Bioscience	UK	Nanodiamond	[7]
Carbodeon	Finland	Nanodiamond	[8]
Diamond Materials	Germany	CVD substrates	[9]
Microdiamant	Switzerland	Nanodiamond	[10]
Nanodiamond.com	Switzerland	Nanodiamond	[11]
Ray Techniques, Ltd	Israel	Nanodiamond	[12]
Advanced Diamond Technologies	USA	UNCD substrates	[13]
Applied Diamond, Inc.	USA	CVD substrates	[14]
CSMH (Compound Semiconductor (Xiamen) Technology Co. Ltd)	China & South Korea	CVD substrates	[15]
Crystallume	USA	CVD substrates	[16]
Diamond Foundry	USA	Gems	[17]
Diam Concept	France	Gems & large mosaic SCD plates. Supply BDD and diamond with NV centres.	[18]
Gemesis	USA	Gems	[19]
SCIO diamond	USA	Gems	[20]
EDP Corporation	Japan	CVD substrates	[21]
NanoCarbon Research Institute, Co., Ltd.	Japan	Nanodiamond	[22]
Crysdiam Technology	China	Gems, CVD substrates and nanodiamond	[23]
Orbray (previously Adamant Namiki Precision Jewel Co., Ltd)	Japan	Large-area CVD substrates	[24]
Pam-Xiamen	China	CVD wafers	[25]
WEC Superabrasives	Taiwan	Gems	[26]
New Diamond Technology	Russia / Hong Kong	Gems, CVD substrates	[27]
2a Technologies	Singapore	Gems, CVD substrates	[28]
Diamond Elements	India	Gems, substrates	[29]
Greenlab	India	Gems	[30]
Hiqute	France	Bespoke SCD substrates, undoped, BDD and NV containing.	[31]
Ningbo CrysDiam Industrial Technology Company, Ltd	China	Gems, SCD substrates	[32]

Hebei Plasma Diamond Technology	China	SCD Substrates	[33]
Shanghai Zhengshi Technology	China	Gems, SCD substrates	[34]
Beijing Worldia Diamond Tools Co., Ltd	China	Abrasive & tool coatings	[35]
Zhuhai Zhong Na Diamond Co., Ltd	China	HPHT industrial diamonds and gemstones	[36]
Henan Huanghe Whirlwind	China	HPHT industrial diamonds and gemstones	[37]
Zhengzhou Sino-Crystal Diamond Co., Ltd	China	HPHT gemstones	[38]
Infi Advanced Materials Co.,Ltd	China	CVD diamond plates and gemstones	[39]

1. Extended discussions

The following sub-sections extend the discussion of some of the topics in the main paper and include more information and more references than space would permit in the Journal.

1.1 C₂ growth species controversy (extended discussion)

Although many gas-phase species may play a role in diamond CVD, it is now widely accepted that the key growth species are CH_x (x = 0-3), and in particular the methyl radical, CH₃ [40]. This idea is supported by a wide range of direct and indirect evidence, and is fundamental to the standard model for diamond growth. C2 or larger hydrocarbon species have significantly lower concentration than C1 species at the diamond surface, and would be rapidly removed from the surface by so-called β -scission reactions [41]. β -scission starts by abstraction of a terminal hydrogen atom from the end of the adsorbed hydrocarbon chain (designated the α -carbon), followed by a rearrangement which breaks the C–C bond in the β -position, releasing gaseous C₂H₄ or C₂H₂ (see Figure S1). This slightly endothermic reaction occurs rapidly at the high temperatures of diamond CVD.

Figure S1. The β -scission reaction is believed to remove long-chained hydrocarbons from the growing diamond surface. (a) An H atom abstracts a H attached to the upper CH₃ group (designated the α -carbon), resulting in (b) the breaking of the bond attaching the β -carbon to the surface, *i.e.* β -scission. (c) The C2 hydrocarbon then desorbs leaving behind a surface radical.

These ideas were challenged, however, in 1994, when a paper published by a group at Argonne National Laboratory [42] reported that diamond films could be grown in a MW plasma using a mixture of Ar and vaporised C_{60} , *i.e.* with apparently no H present. The new type of diamond film, termed ultrananocrystalline diamond (UNCD), contained diamond crystallites ~4 nm in size embedded in an

amorphous sp^2 carbon matrix. It was suggested that with allegedly no H present, a different growth mechanism must be operating, and in the absence of CH₃, the C₂ radical was the growth species. Indirect evidence was presented for this contentious view in that the plasma was bright green in colour, in contrast to the lilac colour of traditional CH₄/H₂ plasmas. Optical emission spectroscopy (OES) showed that the green colour arose from the bright Swan bands of the C₂ molecule which were dominating the emission in the visible region [43]. Further evidence supporting this claim came in the form of density functional theory (DFT) calculations which showed that C₂ could insert itself into surface dimers [44], providing a plausible route to growth.

However, in the few years following these first reports of 'H-free diamond growth', no research group was able to reproduce the results using the Ar/C₆₀ recipe. In all cases, UNCD films were successfully deposited only when trace amounts of H2 were added to the Ar/C60 gas mixture, or alternatively using Ar/CH₄ mixtures which produce H atoms upon fragmentation – otherwise the films were graphitic. This suggested that maybe there were trace amounts of H₂ from an unknown source present in the original Ar/C₆₀ experiments. Doubts began to be cast on the veracity of the C₂ mechanism, and evidence to the contrary began to emerge. Cavity ring-down spectroscopy (CRDS) was used to measure the absolute concentration of C_2 in the plasma during UNCD growth, and this was found not to correlate with film growth rate [45]. Experimental and modelling findings of the gas-phase concentrations during UNCD growth showed that, although the concentration of C2 was high in the centre of the plasma (and gave rise to the bright green emission), its concentration fell by many orders of magnitude close to the cooler diamond surface [46] and was insufficient to account for the observed growth rate. Nowadays, the C₂ growth mechanism has largely been discounted as a viable mechanism for UNCD growth – or for the growth of any form of diamond [47] – although it still gets cited in papers! However, the role of C_2 (and the more abundant C_2H) in renucleation and defect formation is still very much a possibility.

1.2 Role of N in growth (extended discussion)

Nitrogen is one of the most abundant impurities found in the diamond lattice [48]. In many of the early diamond CVD studies during the 1990s, problems such as irreproducible growth rates and inconsistent film morphology were eventually tracked down to the variable levels of nitrogen often present in the gas phase due to slight air leaks in the vacuum system or trace impurities in the process gases. The levels of N₂ required to significantly affect the CVD process turned out to be tiny - of the order of only a few parts per million (ppm). In the interests of process control and reproducibility, as well as to maintain crystal purity, diamond researchers are now far more careful to control unwanted N₂ (and other) impurities in the gas mixture, as well as having tighter vacuum controls. It is now common to add high-vacuum turbopumps to CVD reactors to reduce the chamber base pressure to <10⁻⁶ mbar prior to diamond growth. Such careful control has allowed electronic grade SCD films to be fabricated which contain N concentrations of < 0.1 parts per billion (ppb) [49].

However, sometimes N-containing gases are deliberately added to the gas mixture in known quantities, for purposes such as N-doping (section 8 in the main paper) or NV-centre creation (section 9 in the main paper). Many studies have shown that adding even *trace* amounts of N₂ to the process gas

mixture significantly increases the growth rate from MW-activated CH₄/H₂ gas mixtures, sometimes by a factor of 10 or more [50]. The morphology of the growing diamond surface is also modified by the presence of nitrogen in the gas mixture, which encourages the preferential formation of flat, square {100}-faceted crystals in the case of polycrystalline diamond films. Excess nitrogen in the process gas mixture, however, produces smaller and less well-oriented surface facets. With further increases in gas-phase nitrogen concentration, the films become nanocrystalline or even graphitic [51,52]. For homoepitaxial growth of single-crystal diamond (SCD), nitrogen in the input gas mixture has been shown to promote macroscopic step-bunching (as shown in Figure 7 in the main paper) and disrupt growth on all but the {100} face of an SCD seed [53].

This so-called 'nitrogen effect' - the addition of tiny amounts of N₂ to the process gas mixture causing dramatic changes to the growth rate and morphology - is still not fully understood. Indeed, nitrogen has sometimes been described as acting as a 'catalyst' in the growth, due to a small concentration causing a large effect, but this term is not strictly correct as the gas-phase nitrogen is not unchanged in the reaction – some small fraction ends up incorporated in the film. So how does the usually inert N₂ molecule cause such huge effects?

To answer this, a combination of experimental studies (such as laser absorption and OES) and computer modelling of MW-activated N_2/H_2 and NH_3/H_2 plasmas revealed that the hot plasma environment could create excited-state N_2 species with high internal energy [54,55]. Some of these excited-state N_2 molecules have sufficient energy that their reactions with other gas-phase species or with the diamond surface break the strong N_2 triple bond. Thus, unreactive N_2 is converted to more reactive N-containing radical species such as N atoms and NH, NH₂, and CN radicals, that can now participate in the diamond CVD process.

Theory suggests that each of the reactive species identified above should be able to insert into a C–C dimer bond on the C(100):H (2 × 1) surface *via* a ring-opening/ring-closing reaction mechanism [56] analogous to that for the case of CH₃ addition. These reactions provide viable routes for N incorporation into substitutional sites in the diamond lattice, but they do not explain the unusually large effect that N has upon growth rates and morphology.

Theoretical calculations have been used to investigate a number of possible mechanisms. The first suggests that adsorbed NH species at different step edges on the C(100):H (2 × 1) surface enhance the binding of gas-phase CH₃/CH₂ groups at these locations [57]. A second suggestion is that the additional electron density provided by a buried near-surface N atom weakens any nearby surface C-H bonds. This enhances the rate of the H-abstraction step that creates the surface radical site necessary for CH₃ radical addition [58].

Other mechanisms explain the apparent 'catalytic' nitrogen effect as a consequence of a growth model in which the rate-limiting step is the nucleation of a new layer. Evidence for this model comes from the observation that the surface of CVD-grown (100) diamond often exhibits a relatively smooth, terraced structure, which is greatly enhanced when N is present in the gas mixture [59]. Such morphologies suggest step-flow growth (layer-by-layer mechanism), in which surface migration of hydrocarbon adsorbates, together with preferential adsorption at step-edges, cause the rapid lateral

growth of the diamond layer. This mechanism also implies that nucleation of a *new* layer, on top of a flat pristine layer with no step-edges, would necessarily be slow. Thus, initiation of a new layer requires the creation of a 'critical nucleus' – an immobile surface feature with a low etch rate, which acts as a starting point for subsequent rapid lateral growth. Indeed, Monte-Carlo models using step-flow growth conditions that include such critical nuclei have demonstrated ten-fold enhanced growth rates [60,61]. The nature of such critical nuclei therefore seems key to understanding the nitrogen effect.

A mechanism proposed by Butler and Oleynik [62] suggests that adsorbed CN might act as just such a critical nucleus because it cannot undergo the β -scission reaction responsible for trimming longer-chained hydrocarbons from the diamond surface, as shown previously in Figure S1. Adsorbed CN cannot participate in a β -scission reaction because the N, which is now in the α -position, is not bonded to any H atoms and so cannot undergo an H abstraction. Thus, the CN group may remain on the surface as a protruding defect for a sufficient length of time that migrating hydrocarbon species will encounter it and attach to it – as they would to a step-edge – thus forming the critical nuclei. Hence, it only takes a single CN adsorbate across an entire surface composed of billions of carbon atoms to initiate a new layer, which explains the apparent 'catalytic' effect.

Following recent DFT calculations, a lone C–C dimer protruding from the flat (100) surface was suggested as a candidate for the critical nucleus [63]. In this model, nucleation of *new* layers occurs through the insertion of C into a C–C surface dimer, leading to a lone protruding C–C dimer. This is a relatively slow process under normal CVD conditions. However, when one of the surface carbons was replaced by N to form a C–N surface dimer, the energy required for C insertion was predicted to be substantially lower. In particular, the rate of the critical dimer ring-opening and closing mechanism was 400 times faster for a C–N dimer compared to that for a C–C dimer. As before, it only takes a single N atom embedded in a (100) surface dimer across an entire surface to act as a 'weak spot', allowing C insertion to occur more easily at this location, creating the lone dimer and thereby initiating the new layer.

1.3 Seeding using Detonation Nanodiamond (extended discussion)

The surface charge (or zeta (ζ)-potential) of the detonation nanodiamond (DND) particles in suspension determines the stability of the suspension at a particular pH. One of the reasons for the success of (DND) seeding is that this ζ -potential can be changed from positive to negative by pretreatment with hydrogen or oxygen, respectively [64]. DND particles with negative ζ -potential will stick readily to a positively charged surface, and *vice versa*, meaning any kind of substrate can be easily and uniformly seeded this way. Another method that has been used to change the polarity of the DND particles or the substrate is the use of a cationic or anionic polymer as a coating. The substrate is either dipped in the polymer solution, or the polymer is added to the DND suspension, to realise a ζ -potential opposite to that previously [65]. When the DND suspension is applied to the substrate, the opposite charges attract, and a dense near-monolayer of seeds is formed. The hydrocarbon polymer layer is etched away during the first few seconds of CVD growth, leaving only the seeds behind. DND seeding is particularly useful when the required diamond film is very thin (< 0.5 µm) [66], or where the substrate material is prone to etching or damage by the CVD environment. Examples are coating graphitic materials such as carbon-nanotubes [67], carbon fibres [68], or GaN [69]. Here, the dense monolayer of DND seeds protects the surface sufficiently that, during CVD, the seeds can rapidly coalesce to produce an impermeable diamond coating, after which diamond deposition can proceed as normal. In the case of GaN, nanodiamond seeding to prevent substrate etching was combined with microdiamond seeding to produce a good thermal interface, allowing thick diamond films to be deposited onto GaN for heat-spreading applications [70].

2. Distinguishing lab-grown diamonds from natural diamonds.

Lab-grown CVD or HPHT diamond can be distinguished from natural diamonds by a number of identifying markers caused by their growth conditions [71,72]. Some differences can be seen in an optical microscope. HPHT-grown diamonds often contain metallic inclusions (Fe, Ni, Co) as residues from the catalysts, whereas CVD diamonds often contain dark graphite inclusions.

Similarly, if a gemstone is viewed using polarised light microscopy, any internal strain within the stone will be revealed by a random mosaic multi-coloured interference pattern. These patterns are very prominent in natural diamonds, and result from the huge variable pressures imposed on the diamond when deep in the Earth. In contrast, CVD diamonds have more uniform, banded strain patterns due to their more stable, controlled growth environment. HPHT diamonds are grown under conditions with near uniform pressure conditions, and so are not subjected to stress. As such, they show only weak banded strain patterns or no patterns at all [72].

Shining light with a certain wavelength on diamond gemstones causes them to visibly fluoresce at longer wavelengths, and this fluorescence is useful for the identification of a gemstone's origin. Natural diamonds tend to fluoresce more brightly when illuminated with light of longer wavelengths compared to shorter wavelengths. The opposite is true for synthetic diamond, where short-wavelength UV illumination causes brighter fluorescence – often in a characteristic pattern (HPHT tend to show a cross-shaped pattern whereas CVD diamonds show a striped pattern).

The fluorescence pattern can be readily detected using the *DiamondView* imaging instrument developed by de Beers in the mid-1990s [73,74], and by the detection of the SiV defect using photoluminescence (PL) spectroscopy, while Raman spectroscopy is useful for identifying coloured diamonds. More sophisticated analysis techniques, such as X-ray tomography, laser-assisted-inductively coupled plasma-mass spectrometry, and Fourier transform infrared spectroscopy (FTIR), are used in research labs to extract a wealth of information about the gemstone in question. Nowadays, the development of small, portable micro-Raman or hand-held FTIR systems or X-ray fluorescence analysers, along with real-time imaging based on fast charge-coupled device (CCD) detectors, and relatively inexpensive dedicated instruments such as *Diamondview*, have made the near-instant identification of a gemstone's origin possible for jewellers, museums and trade shows [73].

References

- Lu, J. Ke, Y. Lan, Z. Song, J. Zhang, S. Tang, J. Su, H. Dai, X. Wu, Current Status of Chinese Synthetic Diamonds, *J. Gemmol.* 36 (2019) 748-757. DOI: 10.15506/JoG.2019.36.8.748.
- 2. <u>https://e6cvd.com</u>
- 3. <u>https://www.audiatec.de/en/</u>
- 4. <u>http://diamfab.eu/</u>
- 5. https://ceratonia.com/startseite-ceratonia/
- 6. <u>https://lightboxjewelry.com/</u>
- 7. <u>http://www.york-bio.com/index.htm</u>
- 8. <u>http://www.carbodeon.com/</u>
- 9. <u>http://www.diamond-materials.com/</u>
- 10. http://www.microdiamant.com/
- 11. http://www.nanodiamond.com/
- 12. <u>http://www.nanodiamond.co.il/</u>
- 13. <u>http://www.thindiamond.com/</u>
- 14. <u>http://usapplieddiamond.com/</u>
- 15. <u>https://en.csmh-semi.com/</u>
- 16. <u>http://crystallume.com/</u>
- 17. <u>https://diamondfoundry.com/</u>
- 18. <u>https://diamconcept.eu/</u>
- 19. <u>http://www.gemesis.com/</u>
- 20. http://sciodiamond.com/
- 21. <u>http://www.d-edp.jp/</u>
- 22. <u>http://nano-carbon.jp/english/category_14/</u>
- 23. http://www.cn-jingzuan.com/en/products.asp?cataID=139
- 24. <u>https://orbray.com/en/product/jewel/material/diamond.html</u>
- 25. <u>https://www.powerwaywafer.com/Diamond-wafers.html</u>
- 26. <u>http://www.wec.com.tw/</u>
- 27. http://ndtcompany.com/
- 28. http://2atechnologies.com/
- 29. http://www.diamondelements.com/
- 30. https://www.greenlab.diamonds/
- 31. https://www.higute-diamond.com/
- 32. http://www.crysdiam.com/en/
- 33. https://www.hediamond.cn/m/en/
- 34. https://www.zscvd.com/
- 35. https://www.worldia-tools.com/
- 36. <u>http://zndiamond.com/en/</u>
- 37. https://www.huanghewhirlwind.com/
- 38. http://www.sinocrystal.com.cn/en/
- 39. <u>https://www.lab-diamond.cn/</u>
- 40. D.G. Goodwin, J.E. Butler, Theory of diamond chemical vapor deposition, in *Handbook of Industrial Diamonds and Diamond Films*, ed. M.A. Prelas, *et al.* (1997, New York: Dekker) 527-81.
- 41. J.E. Butler, R.L. Woodin, Thin-film diamond growth mechanisms, *Phil. Trans. R. Soc.* A 342 (1993) 209-24. DOI: 10.1098/rsta.1993.0015.

- 42. D.M. Gruen, S. Liu, A.R. Krauss, J. Luo, X. Pan, Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions, *Appl. Phys. Lett.* **64** (1994) 1502. DOI: 10.1063/1.111872.
- 43. D. Zhou, T.G. McCauley, L.C. Qin, A.R. Krauss, D.M. Gruen, Synthesis of nanocrystalline diamond thin films from an Ar–CH₄ microwave plasma, *J. Appl. Phys.* 83 (1998) 540. DOI: 10.1063/1.366668.
- 44. D.M. Gruen, P.C. Redfern, D.A. Horner, P. Zapol, L.A. Curtiss, Theoretical Studies on Nanocrystalline Diamond: Nucleation by Dicarbon and Electronic Structure of Planar Defects, *J. Phys. Chem. B* **103** (1999) 5459-5467. DOI: 10.1021/jp990165y.
- 45. J.R. Rabeau, P. John, J.I. Wilson, Y. Fan, The role of C₂ in nanocrystalline diamond growth, *J. Appl. Phys.* **96** (2004) 6724-32. DOI: 10.1063/1.1810637.
- 46. P.W. May, Yu.A. Mankelevich, Experiment and modelling of the deposition of ultrananocrystalline diamond films using hot filament chemical vapor deposition and Ar/CH4/H2 gas mixtures: A generalized mechanism for ultrananocrystalline diamond growth, *J. Appl. Phys.* **100** (2006) 024301. DOI: 10.1063/1.2214304.
- P.W. May, J.N. Harvey, J.A. Smith, Yu.A. Mankelevich, Reevaluation of the mechanism for ultrananocrystalline diamond deposition from Ar/CH₄/H₂ gas mixtures, *J. Appl. Phys.* 99 (2006) 104907. DOI: 10.1063/1.2195347.
- 48. M.N.R. Ashfold, J.P. Goss, B.L. Green, P.W. May, M.E. Newton, C.V. Peaker, Nitrogen in Diamond, *Chem. Rev.* **120** (2020) 5745-5794. DOI: 10.1021/acs.chemrev.9b00518.
- 49. A. Tallaire, J. Achard, F. Silva, O. Brinza, A. Gicquel, Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: recent achievements and remaining challenges, *Comptes Rendus Phys.*, **14** (2013) 169-184. DOI: 10.1016/j.crhy.2012.10.008.
- 50. J. Achard, F. Silva, O. Brinza, A. Tallaire, A. Gicquel, Coupled effect of nitrogen addition and surface temperature on the morphology and the kinetics of thick CVD diamond single crystals, *Diamond Relat. Mater.*, **16** (2007) 685-689. DOI: 10.1016/j.diamond.2006.09.012.
- 51. S. Jin, T.D. Moustakas, Effect of Nitrogen on the Growth of Diamond Films. *Appl. Phys. Lett.* **65** (1994) 403-405. DOI: 10.1063/1.112315.
- C.J. Tang, A.J.S. Fernandes, F. Costa, J.L. Pinto, Effect of Microwave Power and Nitrogen Addition on the Formation of {100} Faceted Diamond from Microcrystalline to Nanocrystalline, *Vacuum* 85 (2011) 1130-1134. DOI: 10.1016/j.vacuum.2011.01.024.
- 53. E.E. Ashkinazi, R.A. Khmelnitskii, V.S. Sedov, A.A. Khomich, A.V. Khomich, V.G. Ralchenko, Morphology of Diamond Layers Grown on Different Facets of Single Crystal Diamond Substrates by a Microwave Plasma CVD in CH₄-H₂-N₂ Gas Mixtures. *Crystals* 7 (2017) 166. DOI: 10.3390/cryst7060166.
- B.S. Truscott, M.W. Kelly, K.J. Potter, M. Johnson, M.N.R. Ashfold, Yu.A. Mankelevich, Microwave Plasma-Activated Chemical Vapour Deposition of Nitrogen-Doped Diamond, I: N₂/H₂ and NH₃/H₂ Plasmas, *J. Phys. Chem. A* **119** (2015) 12962-12976. DOI: 10.1021/acs.jpca.5b09077.
- B.S. Truscott, M.W. Kelly, K.J. Potter, M. Johnson, M.N.R. Ashfold, Yu.A. Mankelevich, Microwave Plasma-Activated Chemical Vapour Deposition of Nitrogen-Doped Diamond, II: CH₄/N₂/H₂ Plasmas, *J. Phys. Chem. A* **120** (2016) 8537-8549. DOI: 10.1021/acs.jpca.6b09009.
- M.W. Kelly, S.C. Halliwell, W.J. Rodgers, J.D. Pattle, J.N. Harvey, M.N.R. Ashfold, Theoretical Investigations of the Reactions of N- and O-Containing Species on a C(100):H 2×1 Reconstructed Diamond Surface, *J. Phys. Chem. A* 121 (2017) 2046-2055. DOI: 10.1021/acs.jpca.7b00466.

- T. Van Regemorter, K. Larsson, Effect of a NH Coadsorbate on the CH₃ (or CH₂) Adsorption to a Surface Step on Diamond (100), *J. Phys. Chem. C* 113 (2009)19891-19896. DOI: 10.1021/jp900853a.
- 58. Z. Yiming, F. Larsson, K. Larsson, Effect of CVD Diamond Growth by Doping with Nitrogen, *Theor. Chem. Acc.* **133** (2014) 1432. DOI: 10.1007/s00214-013-1432-y.
- J.E. Butler, Y.A. Mankelevich, A. Cheesman, J. Ma, M.N.R. Ashfold, Understanding the chemical vapor deposition of diamond: recent progress, *J. Phys. Condens. Matter* 21 (2009) 364201. DOI: 10.1088/0953-8984/21/36/364201.
- 60. W.J. Rodgers, P.W. May, N.L. Allan, J.N. Harvey, Three-dimensional kinetic Monte Carlo simulations of diamond chemical vapor deposition, *J. Chem. Phys.* **142** (2015) 214707. DOI: 10.1063/1.4921540.
- 61. P.W. May, N.L. Allan, M.N.R. Ashfold, J.C. Richley, Yu.A. Mankelevich, Simplified Monte Carlo simulations of chemical vapour deposition diamond growth, *J. Phys. Condens. Matter*, **21** (2009) 364203. DOI: 10.1088/0953-8984/21/36/364203.
- 62. J.E. Butler, I. Oleynik, A mechanism for crystal twinning in the growth of diamond by chemical vapour deposition, *Phil. Trans. R. Soc. A* **366** (2008), 295-311. DOI: 10.1098/rsta.2007.2152.
- 63. L.M. Oberg, M. Batzer, A. Stacey, M.W. Doherty, Nitrogen overgrowth as a catalytic mechanism during diamond chemical vapour deposition, *Carbon* **178** (2021) 606-615. DOI: 10.1016/j.carbon.2021.03.008.
- 64. O.A. Williams, J. Hees, C. Dieker, W. Jäger, L. Kirste, C.E. Nebel, *ACS Nano* **4** (2010) 4824–4830. DOI: 10.1021/nn100748k.
- H.A. Girard, S. Perruchas, C Gesset, M Chaigneau, L. Vieille, J.-C. Arnault, P. Bergonzo, J.-P. Boilot, T. Gacoin, Electrostatic Grafting of Diamond Nanoparticles: A Versatile Route to Nanocrystalline Diamond Thin Films, *ACS Appl. Mater. Interfaces* 1 (2009) 2738-2746. DOI: 10.1021/am900458g.
- 66. J.C. Arnault, H.A. Girard, Diamond Nucleation and Seeding Techniques: Two Complementary Strategies for the Growth of Ultra-thin Diamond Films, Ch.10 in *Nanodiamond* (ed. O. Williams, RSC, London, 2014).
- 67. Y. Zou, P.W. May, S.M.C. Vieira, N.A. Fox, Field emission from diamond-coated multiwalled carbon nanotube "teepee" structures, *J. Appl. Phys.* **112** (2012) 044903. DOI: 10.1063/1.4748336.
- J.O. Orwa, J. Reiner, A. Juma, A. Stacey, K. Sears, J. A. Schütz, A. Merenda, L Hyde, R Guijt, V.R. Adineh, Q. Li, M. Naebe, A.Z. Kouzani, L.F. Dumée, Growth of diamond coating on carbon fiber: Relationship between fiber microstructure and stability in hydrogen plasma, *Diamond Relat. Mater.*, **115** (2021) 108349. DOI: 10.1016/j.diamond.2021.108349.
- S. Mandal, E.L.H. Thomas, C. Middleton, L. Gines, J.T. Griffiths, M.J. Kappers, R.A. Oliver, D.J. Wallis, L.E. Goff, S.A. Lynch, M. Kuball, O.A. Williams, Surface Zeta Potential and Diamond Seeding on Gallium Nitride Films, *ACS Omega* 2 (2017) 7275-7280. DOI: 10.1021/acsomega.7b01069.
- E.J.W. Smith, A.H. Pirach, D. Field, J.W. Pomeroy, G.R. Mackenzie, Z. Abdallah, F.C-P. Massabuau, A.M. Hinz, D.J. Wallis, R.A. Oliver, M. Kuball, P.W. May, Mixed-Size Diamond Seeding for Low-Thermal-Barrier Growth of CVD Diamond onto GaN and AlN, *Carbon* 167 (2020) 620-626. DOI: 10.1016/j.carbon.2020.05.050.
- 71. S. Eaton-Magaña, C.M. Breeding, Features of Synthetic Diamonds, *Gems & Gemol.* 54 (2018) 202-204. DOI: 10.5741/GEMS.54.2.202.
- 72. J. Shigley, HPHT and CVD Diamond Growth Processes: Making Lab-Grown Diamonds, 2016. <u>https://www.gia.edu/hpht-and-cvd-diamond-growth-processes/</u>

- 73. Developments in Gemstone Analysis Techniques and Instrumentation During the 2000s, *Gems & Gemology* **46** (2010) 241-257. DOI: 10.5741/GEMS.46.3.241
- U F.S. D'Haenens-Johansson, J.E. Butler, A.N. Katrusha, Synthesis of Diamonds and Their Identification, *Rev. in Mineral. & Geochem.* 88 (2022) 689-754. DOI: 10.2138/rmg.2022.88.13