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Measuring colloidal interactions with confocal microscopy
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We use confocal laser scanning microscopy to measure interactions in colloidal suspensions. By
inverting the radial distribution function, determined by tracking the particle coordinates, we obtain
the effective interaction between the colloidal particles. Although this method can be applied to
arbitrary colloidal interactions, here we demonstrate its efficacy with two well-known systems for
which accurate theories are available: a colloid-polymer mixture and binary hard spheres. The high
sensitivity of this method allows for the precise determination of complex interactions, as
exemplified, for example, by the accurate resolution of the oscillatory effective potential of the
binary hard sphere system. We argue that the method is particularly well suited for the determination
of attractive forces. © 2007 American Institute of Physics. [DOI: 10.1063/1.2755962]

I. INTRODUCTION

Colloidal dispersions find ever-increasing industrial and
household applications, and underpin many biological pro-
cesses. Their behavior is driven by the interactions between
the various components: colloidal particles, solvent mol-
ecules, and other species, such as ions and (macro-) mol-
ecules. The complexity of these systems, and the spatial and
dynamic asymmetry between the colloidal particles
(10 nm—1 pm) and smaller molecular and ionic species, has
led to the development of coarse-graining schemes where the
smaller components are formally integrated out.' This gener-
ates a one-component picture, where only the effective
colloid-colloid interactions need to be considered, and the
complexity of the description is vastly reduced. The colloid
behavior in the original complex system may then be faith-
fully reproduced by appeal to liquid state theory2 and com-
puter simulation.” Since colloidal dispersions are easy to ma-
nipulate and observe, and exhibit liquid and crystal phases
reminiscent of atomic and molecular systems, along with
nonergodic states such as glasses and gels, a range of funda-
mental questions of condensed matter science may be
tackled.*® Understanding colloidal behavior furthers the de-
velopment of advanced materials, such as photonic crystals,7
and provides insight into industrially and biologically rel-
evant problems, including jamming,8 protein crystallization,9
and condensation diseases such as eye cataracts and
Alzheimer’s."’

Central to this one-component approach is the use of a
suitable colloid-colloid interaction u(r). Notable early suc-
cesses include the Derjaguin, Landau, Verwey, and Overbeek
theory of charged colloids'' and the Asakura-Oosawa (AO)
theory of colloids in a solution of macromolecules,'? subse-
quently popularized by V1rij.13 While theories such as these
have been used to describe colloidal model systems in which
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the interactions may be tailored with very considerable
success, "% the general situation is often considerably more
complex.

One is therefore faced with the question of how to mea-
sure an arbitrary effective colloid-colloid interaction. There
has been much recent progress using single particle tech-
niques. The interaction between a colloid and a glass wall
can be accurately measured with total internal reflection
rnicroscopy,ls’16 while the interaction between two colloids
confined to a line can be measured by optical tweezers.' "
One attraction of these methods is that no a priori assump-
tion need be made about the effective colloid-colloid inter-
action, allowing for a robust test of theory. However, the use
of these methods is not always straightforward. For example,
in the case of optical tweezers, relatively small and subtle
experimental errors were shown to lead to the wrong sign of
the interaction of charged colloids.”*" Another limitation of
these methods is that it is difficult (although in principle
possiblezz) to measure colloid interactions at finite concen-
trations.

An alternative approach is to measure correlation func-
tions and invert them to extract the effective potentials. Tra-
ditionally this has been achieved by scattering techniques
that measure the reciprocal space structure function
S(k).>**** However, a fundamental difficulty with these
techniques arises because the inversion of S(k) is a poorly
conditioned problem. Many different forms of repulsive in-
teractions can all be surprisingly well fitted to the S(k) of a
hard sphere fluid.? Similarly, multiple different strong attrac-
tive interactions generate an S(k) that is close to the form
given by the Baxter sticky hard sphere model, 2 suggesting
that not much more is being measured than the second virial
coefficient.

More recently, the advent of real-space techniques such
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as confocal microscopy has allowed the direct determination
of the colloidal radial distribution function g(r),”*® and very
recently used to make high-precision measurements of bi-
nary colloids in two dimensional (2D).” Just as in the case
for S(k), the radial distribution function can also be inverted
to extract an effective potential u(r). 3 At higher densities,
there are subtleties involved in extracting potentials from
pair structure, especially when many-body effects are
present.31 These have been measured quantitatively in the
case of charged colloids®*** and colloids interacting via a
magnetic dipole.33 However, in the low density limit the in-
terpretation is straightforward:

liné g(r) = exp(- Bu(r)), (1)
p—

where B=1/kgT, ky is Boltzmann’s constant, and 7 is the
absolute temperature. This limit also suggests that extracting
potentials from an experimentally determined g(r) is a better
conditioned problem than its reciprocal space counterpart. In
particular, attractive components of the potential will be
magnified exponentially. At finite densities the g(r) depends
in a more complex manner on u(r), but there exist integral
equation and Monte Carlo inversion techniques that can be
used for inversions.>* Moreover, it has been argued%’35 that
for strongly attractive potentials, Eq. (1) remains a remark-
ably accurate approximation even at finite (but still modest)
colloid concentrations.

In this paper we propose that measuring the radial dis-
tribution function g(r) by confocal microscopy provides a
reliable route to the effective pair interaction, particularly for
the attractive components of the potential. Our method
makes no a priori assumption about the nature of the effec-
tive pair interaction, and so it may be applied to systems of
arbitrary complexity, without recourse to theory. We measure
the radial distribution function g(r) directly in three dimen-
sional (3D) with confocal micros.(:opy,28 avoiding any pos-
sible artifacts from Fourier transforming reciprocal space
data, or perturbation of the system by introducing an optical
tweezers to the suspension. To test our method, we consider
systems for which the interaction is well understood from
theory: a colloid-polymer mixture'? and binary colloidal
“hard spheres.”36 In the case of the binary hard sphere fluid,
in addition we find the first quantitative agreement with
theory for the effective interaction between the large par-
ticles along with the first 3D resolution of the correlation
functions for the smaller particles.

A schematic of the systems we consider is shown in Fig.
1, along with the effective interactions between the large
colloids used for the binary hard sphere system.36 This paper
is organized as follows: in Sec. II we describe our experi-
mental and analysis methodology. Section III identifies key
model interactions and outlines the Monte Carlo simulation
employed. After direct visualization of the systems under
investigation with confocal microscopy images, Sec. IV
compares theoretical, simulated, and experimental radial dis-
tribution functions. This is followed by direct application of
Eq. (1) to yield the effective colloid-colloid interaction. We
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FIG. 1. (Color online). Schematics of the systems considered. (a) Colloid-
polymer mixture. The dashed lines show depletion zones, into which poly-
mer centers of mass may not enter. When two colloids approach such that
these zones overlap, the polymer entropy increases, which leads to an effec-
tive attraction between the colloids (Ref. 12). (b) Depletion zones around
two colloids in a dilute solution of smaller colloids. (c) Depletion zones
around two colloids in a concentrated solution of smaller colloids. The cor-
relations between the smaller colloids can lead to an oscillatory pair poten-
tial, shown in (d) where effective large colloid pair potentials, calculated
from density functional theory (Ref. 36), are depicted as a function of small
colloid volume fraction ¢s.

also consider large-small and small-small correlations in bi-
nary hard spheres and conclude with a discussion and out-
look in Sec. V.

Il. EXPERIMENTAL SYSTEM

We used polymethylmetacrylate colloids, sterically sta-
bilized with polyhydroxyl steric acid. The colloids were la-
beled with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazol (NBD)
and rhodamine isothiocyanate in the case of the large and
small colloids, respectively.37 The use of two different dyes
enabled us to distinguish both species. The polydispersity
was determined with static light scattering to be 3% for the
large (0=2.4 um) and 5% for the small (6=1.2 um) col-
loids. In the binary hard sphere system, the small-large col-
loid size ratio ¢=0.5.

The polymer used was polystyrene, with a molecular
weight of 3.1X 107, here My/My=1.3. We estimate the
polymer radius of gyration as R;=160 nm in an ideal
solvent.”® Here the solvent may be regarded as “good,” since
the experiments were conducted at room temperature, some
80 °C above the theta temperature for this solvent mixture,
as deduced from phase separation studies of the polymer
solution. Some swelling of the polymer coils may therefore
be expected. We estimate the swelling as to be 25%—40%,
and within these bounds treat it as a fit parameter in our
description of the colloid-colloid interactions (Sec. III), ar-
riving at a value of 35%, or R;~200 nm, leading to a
polymer-colloid size ratio g=0.18.

To match as much as possible both the colloid density
and refractive index, we used a solvent mixture of cis-decalin
and cyclohexyl bromide. Due to the steric stabilization and
refractive index matching, the van der Waals interactions are
reduced to a fraction of the thermal energy and can therefore
be neglected. We note that sterically stabilized colloids in
nonaqueous solvents allow us to probe the interactions al-
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most all the way to contact. This is in contrast to aqueous
systems often used, where the charge stabilization necessary
to prevent aggregation can somewhat hamper measurements
close to contact.'®!" To screen any (weak) electrostatic inter-
actions, we dissolved tetrabutyl ammonium bromide salt to a
concentration of 300 nM in the case of the binary hard
spheres40 and to 4 mM concentration in the case of the
colloid-polymer mixture."! The estimated Debye screening
lengths are 100 and 13 nm, respectively, well below the char-
acteristic depletion interaction ranges of both systems.

We fix the (large) colloid volume fraction at ¢¢
= ;—)7703;):0.05010.005, where p is the number density and o
the diameter. The data were collected on a Leica SP5 confo-
cal microscope, using 488 and 532 nm laser excitations for
the NBD and rhodamine labeled colloids, respectively. The
microscope was fitted with a resonant scanner and operated
at a typical scan rate of 20xy frames per second. Typically
128 frames were taken per 3D image. Combining these op-
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tical sections into 3D images allowed us to track the coordi-
nates of each particle as previously described with a preci-
sion of around 100 nm.”® Each g(r) was sampled from 8—12
independent 3D images, containing 20-30 000 particles in
total. All images were recorded at least 20 um from the edge
of the sample, and we found no evidence of wall-induced
layering. We note that it is possible to consider xy data only,
we have found that in the case of a 3D system this entirely
fails to reproduce the pair structure, due to contributions
from out-of-plane particles which are not excluded, due to
the limited axial resolution. We therefore work exclusively in
3D.

lll. SIMULATIONS AND MODEL INTERACTIONS

The seminal theory of colloid-polymer mixtures is that
of Asakura and Oosawa.'” This AO model leads to a pair
interaction between two hard colloidal spheres in a solution
of ideal polymers which reads

forr<o

Bupo(r) = 7(2R;) zpr (1 + )’ 3 . r
Haolr) = 6 7 2(l+q)o 2(1+4g)d
0

where the polymer fugacity zpg is equal to the number den-
sity ppr of ideal polymers in a reservoir at the same chemical
potential as the colloid-polymer mixture. Thus within the AO
model the effective temperature is inversely proportional to
the polymer reservoir concentration. The polymer-colloid
size ratio g=2R 5/ 0, where R is taken as the polymer radius
of gyration, and o is the colloid diameter. Although more
accurate potential forms can be derived for interacting
polymers,42 here we nevertheless use the simpler AO form
(2) since for this small size ratio and the relatively low poly-
mer reservoir volume fraction ¢P=§pPRRé used, the differ-
ences are expected to be on the order of just a few percent.42

For the binary hard sphere system, we used a potential
Bugps(r) taken from an analytical parametrization of the
density functional theory (DFT) results of Roth ef al.,® plot-
ted in Fig. 1, which are known to closely match computer
simulations. For both the colloid-polymer mixture and the
binary hard spheres, the mapping between the depletant res-
ervoir and the experimental system is obtained from Wi-
dom’s particle insertion method.*

In the colloid-polymer mixture, the effects of charge
were found to be negligible. For the binary hard sphere sus-
pension, the electrostatic interactions are weak and screened
such that the repulsion amounted to only around 1kgzT at
contact and the Debye length of around 100 nm (Ref. 44)
was much shorter than the depletion interaction induced by
the small colloids (1.2 wm). Nevertheless some residual
effect of charge was observed when the g(r) obtained from

for r=0<o+(2Rg)

for r = o+ (2R),

Eq. (1) was compared with the experimental results. In par-
ticular, the first peak was somewhat lower, suggesting that
the attractive well at contact was somewhat shallower than
anticipated. Therefore, in order to model the interactions
more accurately, in addition to the effective interaction
ugps(r),”® we used the screened Coulomb interaction (ne-
glecting van der Waals interactions due to the refractive in-
dex matching).11 This was included by adding a Yukawa
(screened Coulomb) potential to the binary hard sphere ef-
fective interaction:

o0 forr<o

Buyuk(r) =Y , exp(= «(r—0)) 3)
Be

for r = o,
rlo

where r is the center to center separation of the two colloids.
The contact potential is given by

2 b
1+ k02?0’

Be (4)
where Z is the colloid charge, « is the inverse Debye screen-
ing length, and I is the Bjerrum length. In order to estimate
the colloid charge, we fitted the height of the first peak of the
radial distribution function by varying the potential at con-
tact, determining a value of (200+50)e for the colloid charge
(Be=(1£0.5)kgT). This value is consistent with the previous
work on this system,44 and we found similar agreement at all
state points considered, and we therefore fix Be=1kzT
throughout the treatment of the binary hard spheres. We
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FIG. 2. (Color online). Confocal microscopy snapshots of the systems in-
vestigated. (a) “Hard sphere” colloidal fluid, ¢~=0.05. (b) Colloid-polymer
mixture, ¢-=0.05, cp=3.58 X 107*. Polymers not shown. (c) Binary hard
sphere colloidal suspension, ¢; =0.05, ¢3=0.10. (d) Binary hard sphere col-
loidal suspension, ¢;=0.05, ¢¢=0.40, dynamically arrested state. Bars
=10 pm.

stress that although the Yukawa repulsion is not determined
with high accuracy, it is only included as a perturbation. A
more accurate determination of the colloid charge in these
nonaqueous systems would be challenging indeed, especially
at moderate or high colloid volume fraction, but our radial
distribution function analysis has been tested successfully
against electrophoretic measurements at low colloid
concentrations.”” We therefore believe this to be suitable
treatment of a relatively small, yet observable, deviation
from hard sphere behavior.

It is important to take into account the polydispersity of
the colloids, and the fact that the coordinate tracking gener-
ates an intrinsic error. To reproduce the experimental radial
distribution functions, we therefore performed Monte Carlo
(MC) simulations in the canonical ensemble.” The 3% poly-
dispersity is directly included as a Gaussian distribution of
colloid diameters. Coordinate tracking errors are incorpo-
rated by adding a Gaussian noise term of standard deviation
100 nm to coordinates when calculating g(r). The effective
colloid-colloid interactions used in the simulations are taken
from Eq. (2) for the colloid-polymer mixture and from the
DFT potentials of Roth e al.,*® together with Eq. (3), for the
binary hard sphere case.

IV. RESULTS

A. Colloid-polymer mixture radial distribution
functions

Real-space confocal microscopy images of the systems
studied are illustrated in Fig. 2. A hard-sphere-like dispersion
is shown in Fig. 2(a). As might be expected for relatively
dilute hard spheres, little structure is evident. Figure 2(b) is a
colloid-polymer mixture with a polymer weight fraction cp
of 3.58X107*. Note the increased number of closely ap-
proaching colloids in the case of added polymer, providing
direct visual evidence of attractions.

The connection between interactions and structure in the
colloid-polymer mixture is more quantitatively demonstrated
in Fig. 3, which depicts radial distribution functions g(r) at
varying polymer concentrations. The experimental data di-
rectly reveal a rise in the peak of g(r) with increasing poly-
mer concentration, as expected for a depletion interaction. To
make a more quantitative comparison we also plot g(r)
=~ exp(—Buxp(r)), which closely resembles the real g(r) for a
perfect AO system at these densities,” as well as the MC
simulations which take into account the polydispersity and
the intrinsic coordinate tracking errors. The MC results show
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FIG. 3. Radial distribution functions g(r) of colloid-polymer mixtures at
various polymer concentrations. Monte Carlo simulations with polymer res-
ervoir volume fraction ¢pg, according to Eq. (2) (solid lines), are compared
to the experimental results (circles). Dashed lines correspond to the relation
g(r) =exp(—=Buxp(r)). Monte Carlo simulations consider experimental reso-
lution and polydispersity. (a) Low polymer concentration Cp<<0.001. (b)
High polymer concentration Cp>0.001.

how the first attractive peak is broadened due to the com-
bined effects of polydispersity and particle tracking accuracy.
The near quantitative agreement between the MC simula-
tions and the experiment suggests that this system is well
described by the AO depletion potentia\l.12 In other words,
even when the experimental resolution makes a significant
impact on the measurement, we may nevertheless access the
effective pair potential for different polymer concentrations,
using confocal microscopy and MC simulation. There is a
tendency for the experimental results to peak slightly to the
left of the MC results in Fig. 3. This effect is possibly due to
a non-Gaussian error in particle tracking, in the case of
closely approaching particles, as noted in the case of 2D
particle tracking.20

B. Binary hard sphere radial distribution functions

Confocal microscopy images of the binary hard sphere
system investigated are shown in Figs. 2(c) and 2(d). The
image with a low density of small colloids (¢¢=0.1), Fig.
2(c), reveals the possibility of imaging both species. At
higher concentrations ($g=0.4), Fig. 2(d), the images clearly
show a pronounced layering of the small particles around the
large ones. These correlations are expected to affect both the
effective colloid-colloid interactions and the concomitant
correlation functions.

The radial distribution functions for the large colloids
are depicted in Fig. 4 for increasing concentration of the
small colloids. To test Eq. (1), we again compare the experi-
mental results to theory. Overlaying the experimental radial
distribution function with g(r)=exp[—B(ugys(r) +uyyk(r))]
(Fig. 4, dashed lines) we see a near quantitative agreement,
especially for the higher-order correlations. Using the same
potentials, we also carried out MC simulations to include the
particle tracking errors and colloid polydispersity. The results
are shown in Fig. 4 (solid lines). Although the radial distri-
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FIG. 4. Radial distribution functions g(r) of large colloids in binary “hard
spheres” at various concentrations of the smaller species. MC simulations
with small colloid volume fraction ¢g (Ref. 36) (solid lines) are compared to
the experimental data (circles) as black lines. Dashed lines correspond to the
relation g(r) = exp[—B(ugys(r) + uyyx(r))]. In addition to experimental reso-
lution and polydispersity, MC simulations account for residual colloid
charge. (a) Low small colloid concentration, ¢¢<0.25. (b) High small col-
loid concentration, ¢¢>0.25.

bution functions are less sensitive to the inclusion of poly-
dispersity and tracking errors than in the colloid-polymer
mixture case, there is nonetheless an improved agreement
with the experimental data, especially close to contact. The
good agreement between experiment and theory suggests
that, in this case, many-body contributions, which we have
not considered, are relatively small.

The interplay between AO-like depletion at low ¢g (non-
interacting small particles) and the emergence of small-small
correlations at higher ¢y is well captured in the radial distri-
bution functions. At low ¢y, correlations are small and the
g(r) resemble those of a colloid-polymer mixture at similar
parameters. By contrast, at high ¢, the small particle corre-
lations induce long-ranged oscillations in g(r) and, by exten-
sion, also in the effective interaction Bugys(r).

The binary hard sphere suspension with a small colloid
volume fraction of ¢¢=0.4 was, in fact, a nonequilibrium
dynamically arrested state. In other words, confocal micros-
copy revealed no motion, either of the larger or the smaller
particles, on a time scale of minutes. In the dilute limit, the
characteristic time to diffuse one radius is 29 s for the large
particles. The assumptions of Eq. (1) are only valid in dilute
ergodic fluids, which clearly does not include dynamically
arrested states. Bearing this in mind, we nonetheless com-
pare the radial distribution functions determined experimen-
tally with MC simulation and the equilibrium density
functional theory’® wused in Eq. (1) with both g
=exp[—B(ugys(r) +uyyk(r))] and MC simulation. Perhaps
surprisingly, the agreement seems reasonable, considering
that the simulation was ergodic, consistent with the relatively
weak interactions, Fig. 4(b). However, the small discrepan-
cies in the radial distribution functions, particularly in the
height of the second peak, may be related to the nonequilib-
rium nature of the experiment. We note that the combined
volume fraction here is ¢;+ ¢s=0.45, and even the weak,
screened, electrostatic repulsion may be sufficient to promote
crystallization at this colloid volume fraction in the case of a

Measuring colloidal interactions with confocal microscopy
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FIG. 5. Cross correlation functions of binary hard spheres. (a) Small-small
correlations ggg(r) at the small colloid volume fractions ¢g shown. (b)
Large-small correlations g 5(r) at the ¢¢ shown. The sharper peaks at con-
tact in the simulation data may be attributed to the fact that we considered
monodisperse hard spheres and ignored any experimental particle tracking
inaccuracies in the MC simulation.

single colloid species.44 Crystallization is suppressed here by
the inclusion of the larger colloids, leading to the dynami-
cally arrested state observed. It is possible that the discrep-
ancy between the ergodic simulations and nonergodic experi-
ments may be related to these weak electrostatic interactions,
in particular, between the majority small colloids, which are
not considered in ugyg(r).

We also succeeded in tracking the coordinates of the
small colloids. This enabled us to move beyond the “one-
component” picture and treat the large and small particles on
an equal footing. Two such cross and small-small correlation
functions, g; s(r) and ggs(r), are shown in Fig. 5. We note, in
particular, the long-ranged correlations in the dynamically
arrested state, ¢g=0.4. In this case we carried out MC simu-
lations in the full binary hard sphere mixture and compared
again with the experimental results. Here the simulations
only consider monodisperse hard spheres. Despite the track-
ing errors which are relatively more significant for the small
colloids, we nevertheless obtain reasonable agreement be-
tween experiment and simulation.

C. Measuring the interactions
1. Binary hard sphere mixtures

We argued in the Introduction that the advantage of mea-
suring g(r) was that, in particular, for systems dominated by
strong attractive potentials, the inversion to an effective po-
tential u(r) was better conditioned than the more common
reciprocal space techniques. Figure 6 shows direct compari-
sons of the effective pair potential for the binary hard sphere
(HS) system, obtained by invoking the simplified inversion
[Eq. (1)] which is expected to be accurate for these param-
eters. In Fig. 6(a) there are no small spheres, and this bench-
mark HS potential is well captured with our method. The
development of the effective potential between the large col-
loids with increasing concentration of the small colloids is
shown in Figs. 6(b)-6(e). The gradual increase in interac-
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FIG. 6. Effective pair potentials u(r) obtained directly from pair correlation
functions. Circles denote experimental data, obtained from the measured
g(r) through Eq. (1). (a) Pure “hard spheres.” (b)—(e) Binary hard sphere
potentials (solid lines) are calculated with DFT (Ref. 36). These potentials
are also depicted in Fig. 1.

tions from weak depletion, with very few correlations (AO
like) at low small colloid density [Fig. 6(b)], to a highly
developed oscillatory potential is demonstrated. Note that the
small spheres generate a much longer-ranged correlation be-
tween the large spheres than the polymers [Figs. 6(d) and
6(e)]. The agreement with theory, as extracted by Eq. (1)
using u(r)=ugys(r) +uyyg(r), is particularly good, especially
at larger distances. We note that these interactions were ex-
tracted from experiments without the need for any fit param-
eters. In particular, the oscillatory portion of the potentials is
resolved in near quantitative agreement with theory. This
contrast with pioneering results obtained with optical
tweezers,'© which although they demonstrated oscillations,
could not be quantitatively fitted to DFT results, even when
polydispersity and related effects were taken into account.*

2. Colloid-polymer mixtures

Whereas the radial distribution functions for the binary
HS mixture could be inverted accurately without the need to
explicitly include the effects of polydispersity and tracking
errors, the case is not quite so clear-cut for the colloid-
polymer mixtures. We show in Fig. 7 the potential for cp
=0.288 mg/1, extracted via Eq. (2). The agreement is clearly
not as good as for the binary HS case. The primary reason is
that the potential range is considerably smaller, and so coor-

4

$,0.32

"4 i 1 L 1 L 1 "
0.0 0.5 1.0 15 2.0
rlo

FIG. 7. Effective pair potential u(r) for a colloid-polymer mixture at ¢,
=0.32 obtained directly from the measured pair correlation functions
through Eq. (1) and compared to AO theory (dashed line) and to a potential
with additional noise convolved through (solid line).
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dinate tracking errors and polydispersity contributions are
more pronounced. It is tempting to regard this as a convolu-
tion operation

upxp(r) = p(r) ® u(r), (5)

where upxp(r) is the measured effective pair potential (for
example, that shown in Fig. 7) and p(r) is a blurring func-
tion. Deconvolution*’ with a suitable choice of p(r) may re-
cover a good estimate for the true effective pair potential
u(r). However, the discontinuous nature of uso(r) [Eq. (2)],
due to the hard core, somewhat complicates the convolution
operation. Therefore, we convolve the radial distribution
function obtained from Eq. (1) instead, and use the same
equation to obtain a “blurred” u(r). The agreement with the
experimental data is much better than the original potential,
suggesting that deconvolution may well yield potentials with
higher resolution than can be obtained by direct application
of Eq. (1). Here we set p(r) as a Gaussian of standard devia-
tion 120 nm, a value comparable to the tracking error and
colloid polydispersity. More sophisticated treatments might
deal with the non-Gaussian particle tracking errors, which
may result in improved agreement for small r.

V. CONCLUSIONS

In short we have demonstrated a method to directly and
quantitatively access effective interactions in colloidal dis-
persions. The colloidal radial distribution functions for
model colloid-polymer and colloid-colloid mixtures were
measured with confocal microscopy. MC simulations that
used established theoretical potentials, and included the mea-
sured polydispersity and intrinsic particle tracking error ef-
fects, quantitatively reproduce the experimental g(r)’s. We
also inverted the radial distribution functions to extract ef-
fective potentials u(r). For the colloid-polymer system, quan-
titative accuracy was affected by the polydispersity and
tracking errors, but for the colloid-colloid system, we ob-
tained near quantitative agreement with effective potentials
derived from DFT.*® In particular, we obtained the first guan-
titative agreement between measurements and the oscilla-
tions of the effective potential induced by 3D hard spheres.
We also demonstrated the accuracy of the experimental tech-
nique by measuring, for the first time, the cross correlations
g1s(r) between the large and the small colloids as well as
gss(r) the small-small radial distribution function. This may
lead to the possibility of extracting effective potentials be-
tween particles of different sizes in a more complex mixture
as well.

We believe our results demonstrate that our method may
be used for measuring interactions in rather more general
systems than the colloid-polymer mixture and binary “hard
spheres” presented here. These trial model systems neverthe-
less prove a valuable test bed, since both are well described
by theory. The quantitative agreement found in both cases
underlines our confidence in this method.

That we find reasonable agreement in the case of a dy-
namically arrested state underlines observations that arrest is
not always accompanied by a significant change in
structure.* Tt is possible that dynamical arrest may be attrib-
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uted to electrostatic interactions, whose effects on the struc-
ture are too subtle to cause significant changes to the radial
distribution function. However, we note that the confocal
image in Fig. 2(d) suggests medium-ranged order of the
smaller particles, reminiscent of that seen in experiments48
and simulations.**°

It is appropriate to consider the limitations of our ap-
proach. We have predominantly measured the so-called “en-
ergetic fluid regime,”*® where g(r) =~exp(=Bu(r)) provides a
good approximation to the radial distribution function. This
exponential sensitivity allows for accurate measurements of
the potentials and for a simplified inversion procedure. We
have worked at around 10% of the freezing volume fraction,
in the case of hard spheres, and found very good agreement.
Similar conclusions may be drawn from earlier work, where
good agreement was found between Eq. (1) and experiment
in the case of charged colloids, albeit at a correspondingly
lower volume fraction.”® At higher volume fractions, g(r)
becomes dominated by higher-order maxima which result
from packing. Accurate reverse MC and integral equation
techniques exist for inverting g(r) outside of the energetic
fluid regime. Exactly when these more sophisticated methods
need to be used will depend on details of the system. More-
over, there are added subtleties to take into account. For
some systems many-body potential effects can become in-
creasingly pronounced for increasing densities.”' In addition,
colloidal systems are always polydisperse, and inversion
techniques for polydisperse fluids are not yet well estab-
lished. Our results suggest that polydispersity will mask
some “high frequency” features of the potentials.

We have measured relatively large colloids in a system
optimized for confocal microscopy. Clearly, relatively
greater inaccuracies in the particle tracking, for example,
with smaller or nonrefractive index matched particles, will
result in a less precise measure of the effective pair interac-
tion. Moreover, it should be emphasized that the relevant
length scale is the interaction range, set, for example, by the
depletant size or Debye length rather than the actual colloid
diameter itself. An advantage of our system over single par-
ticle techniques is that, because a larger number of colloids
are being measured simultaneously, statistical averaging is
more easily performed.

Finally, we believe that it is even possible to extend this
technique beyond the spherically symmetric interactions we
have considered so far to the newly emerging field of colloi-
dal molecules”? and measure orientationally dependent dis-
tribution functions g(r, 6, @).
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