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We compare the behavior of a new two-dimensional aqueous colloidal model system with a simple
numerical treatment. To the first order the attractive interaction between the colloids induced by an
in-plane rotating ac electric field is dipolar, while the charge stabilization leads to a shorter ranged,
Yukawa-like repulsion. In the crystal-like “rafts” formed at sufficient field strengths, we find
quantitative agreement between experiment and Monte Carlo simulation, except in the case of
strongly interacting systems, where the well depth of the effective potential exceeds 250 times the
thermal energy. The “lattice constant” of the crystal-like raft is located approximately at the
minimum of the effective potential, resulting from the sum of the Yukawa and dipolar interactions.
The experimental system has display applications, owing to the possibility of tuning the lattice
spacing with the external electric field. Limitations in the applied field strength and relative range
of the electrostatic interactions of the particles result in a reduction in tunable lattice spacing for
small and large particles, respectively. The optimal particle size for maximizing the lattice spacing
tunability was found to be around 1000 nm. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3115641�

I. INTRODUCTION

Colloidal suspensions present the possibility to develop
novel materials via self-assembly. Of particular interest are
colloidal crystals, whose optical properties can generate iri-
descent colors and provide a means by which photonic crys-
tals may be produced,1 while further applications range from
lasers2 to display devices,3 with recent advances demonstrat-
ing tunable colors through control of lattice spacing with an
external field.4 Further to the practical importance of colloi-
dal crystals, their well-defined thermodynamic temperature
allows colloidal dispersions to be viewed as mesoscopic
“model atoms.”5

Recently, the ability to tune the colloid-colloid interac-
tions led to the observation of a wide variety of
structures.6–11 Of particular interest here, to the first order ac
electric fields can induce dipolar interactions between the
colloidal particles, leading to anisotropic interparticle poten-
tials and exotic crystal structures, some of which are not
observed in atomic and molecular systems,7 while external
control of the colloid-colloid interactions allows direct obser-
vation of phase transitions.12 Furthermore, direct micro-
scopic observation at the single-particle level allows an un-
precedented level of detail to be accessed,13 opening the
possibility of tackling long-standing problems in condensed
matter, such as freezing.14

The introduction of a rotating ac field opens up even
more possibilities. In this case, the dipolar interactions lead
to attraction in the plane of rotation and to repulsions above

and below. Studies with a rotating magnetic field on granular
matter indeed produced disklike patterns consistent with
expectations.15,16 Unlike granular matter, since colloidal dis-
persions exhibit Brownian motion, thermodynamic equilib-
rium structures �i.e., crystals� may be obtained.11,17 In a pre-
vious work Snoswell et.al.11 showed that lattice spacing
within quasi-two-dimensional �quasi-2D� colloidal crystals
could be controlled in situ, by means of coplanar rotating
electric field. The interparticle dipolar interactions in the
plane of the electric field may be treated to first order as a
circularly symmetric attraction, due to the time averaging
effect of a rapidly rotating field �1000 Hz� on relatively large
particles on the micron lengthscale, where the diffusive time-
scale is of the order of seconds.18

In considering the interactions between particles, the
asymmetry between the colloids �10 nm−1 �m� and
smaller molecular and ionic species must be addressed. A
number of coarse-graining schemes have been developed
where the smaller components are formally integrated out.19

This generates a one-component picture, where only the ef-
fective colloid-colloid interactions are considered, and the
complexity of the description is vastly reduced. The equilib-
rium behavior of the colloids in the original multicomponent
system may then be faithfully reproduced by appeal to liquid
state theory20 and computer simulation.21 Central to the suc-
cess of this one-component approach is the use of a suitable
effective colloid-colloid interaction u�r�.

In this study, we use a simple numerical treatment in
which we can predict the lattice spacing in the quasi-2D
crystal from the electric field strength. We consider a model
system of charged colloids in a rotating electric field.11 By
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exploiting the knowledge both of the electrostatic repulsions
and dipolar attractions, we present a direct, quantitative com-
parison of a tunable interaction and a material property of the
crystalline “rafts” formed. We combine experimental mea-
surements of the crystal lattice constant d as a function of
field strength E with Monte Carlo �MC� simulations accord-
ing to a screened Coulomb repulsion plus dipolar attraction
where the only fitting parameter is the Debye screening
length.

In the simulations, we used pairwise interactions, in
other words, we assumed that at the higher densities at which
the crystalline rafts are formed, the system is still accurately
described by interactions calculated for two particles in iso-
lation. We note that deviations from this assumption of pair-
wise additivity have been measured both in the case of
strongly charged colloids22 and in the case of repulsive dipo-
lar interactions.23 We further compare simulation results with
the minimum of the effective potential, which we take as a
measure of the lattice constant of the crystalline rafts, which
we also determine from experimental data.

This paper is organized into six sections. In Sec. II we
present expressions for the effective interactions between the
colloids, summing the attractions and repulsions to provide
an effective one-component description of the system. Sec-
tion III describes our experimental methodology. Section IV
outlines the MC simulation technique employed. The com-
parison of simulation and experimental results is presented in
Sec. V and in Sec. VI we extrapolate our findings to maxi-
mize the tunability of the crystal lattice constant, which may
be useful for applications. We conclude our findings in Sec.
VII.

II. THEORY AND MODEL

In the following we will consider a system consisting of
two particles in a surrounding medium. We shall assume that
these particles are charged, leading to a repulsive interaction,
and that the rotating ac electric field induces a dipole mo-
ment in the two particles and thus induces an attractive in-
teraction. To describe this system, we start from the Der-
jaguin, Landau, Verwey, and Overbeek �DLVO� approach,24

which consists of attractive van der Waals interactions at
short range and long-ranged repulsive electrostatic interac-
tions. The van der Waals interactions are very short-ranged
and are neglected, as electrostatic repulsions inhibit the close
approach at which van der Waals interactions become impor-

tant. We shall therefore assume that the only relevant attrac-
tions result from the long-ranged dipolar interactions induced
by the rotating electric field.

In the linear Poisson–Boltzmann regime, the electro-
static repulsions may be expressed as a hard core Yukawa or
screened Coulomb interaction,24

�uyuk�r� = �� for r � �

��yuk
exp�− ��r − ���

r/�
for r � � , � �1�

where �=1 /kBT, where kB is Boltzmann’s constant, T is
temperature and � is the colloid diameter. The potential at
contact �	yuk is given by

��yuk =
Z2

�1 + ��/2�2

lB

�
, �2�

where Z is the colloid charge, lB is the Bjerrum length, and
�=�4
lB�i is the inverse Debye screening length where �i is
the total number density of monovalent ions.

Now the regime of the linear Poisson–Boltzmann theory
in which Eq. �1� holds corresponds to relatively weak charg-
ing. Although this is not the case here, a potential of the
Yukawa form is recovered at larger separations, if a smaller,
renormalized charge is considered.25 We tabulate measure-
ments of the �-potential of dilute suspensions in Table I.
These values suggest that we expect a renormalized charge
in the conditions under which the colloids form the crystal-
line rafts, rather high colloid concentration, hence high
counter ion concentration.18,25 Therefore, noting that the De-
bye length is much smaller than the colloid radius, we follow
Bocquet et al.26 and take the following expression for the
renormalized charge Zeff:

Zeff =
4�

lB

�1 + ��/2�2

1 + ��
, �3�

which we substitute for Z in Eq. �2�. This expression gives
good agreement with measurements of the effective colloid
charge for particles with a comparable �-potential.27 We re-
call that many-body effects can lead to a density dependence
in the effective colloid-colloid interactions.22,23 However, we
shall neglect these effects in the present work.

The attractive potential between the colloids resulting
from the rotating ac electric field is treated to first order as a
dipolar interaction,

TABLE I. Fitted parameters of the Debye screening length used in the MC simulations for systems with
different colloid diameters. Errors in the diameter are standard deviations in the data obtained found from
electron microscopy measurements, while those in ��, ��, and the ionic strength are estimated from the fitting
of d from MC data. � potential measurements were made in a 0.01 mmol KCl solution.

Diameter
�nm� Effective Yukawa contact potential �� ��

Ionic strength
�mmol�

� potential
�mV�

Melting well depth
�kBT�

75786 4.600.05�103 19.01.0 0.060.01 −34.01.4 2.70.1
96544 5.780.02�103 28.42.0 0.080.01 −37.11.4 2.90.1

139030 8.270.05�103 32.33.0 0.050.005 −39.92.0 3.10.1
207040 1.170.01�104 38.83.0 0.040.005 −43.62.4 3.40.1
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udip�r� =
�p � p�
2
��0r3 , �4�

where p is the induced dipole moment of each particle, � is
the dielectric constant, and �0 is the permittivity of free
space. The dipole moment may be calculated from the
strength of the electric field,

p = 1
2
��0�3KE� , �5�

where K is the Clausius–Mosotti factor and takes values be-
tween 1 and �1/2 depending on the origin of the dipole
moment. We note that in this case of an alternating field, the
root-mean-square of the time dependent field is taken. Sub-
stituting r=� leads us to a potential at contact

�dip��� =
�p � p�
2
��0�3 , �6�

which has a cubic dependence on the colloid diameter, in the
case of all other contributions being unchanged.

In considering the value of the Clausius–Mosotti factor,
two regimes are relevant, corresponding to applied electric
fields of high and low frequencies, in which the dipolar in-
teractions result from dielectric permittivity differences be-
tween the particles and the solvent and differences in con-
ductivity, respectively.6 The crossover frequency �� between
these regimes is given by

�� =
1

2
�0
�−

sp
2 − 2spsm + 2sm

2

�p
2 − �p�m + 2�m

2 , �7�

where s are conductivities and the indices p and m refer to
the colloidal particles and the medium, respectively. Follow-
ing Ref. 28 the conductivity of the particles sp is taken to be
the sum of the bulk conductivity sb�0 and the conductivity
on the surface ss.

sp = sb + ss� . �8�

In principle Eq. �8� holds for particles larger than 1 �m.
In the case of much smaller particles, one should take into
account that the contribution of the diffuse layer to the con-
ductivity of the particles. Noting that the smallest particles
used in the experiments are 757 nm in diameter and that the
conductivity of the de-ionized water is relatively low, we
neglect the double layer contribution and thus use Eq. �8�.
Since the largest particles studied are 2070 nm in diameter,
the frequency is 1 kHz, and the bulk ionic strength is 0.01–
0.1 mmol as determined from conductivity measurements,
we work in the low frequency regime where the contribu-
tions from the conductivities dominate.28 The Clausius–
Mosotti factor therefore takes the following form:

Ks =
sp − sm

sp − 2sm
. �9�

Due to the surface conductivity, sp is much larger than the
conductivity of the medium sb. The value of Ks is therefore
close to one. We now combine the contributions from the
electrostatic repulsions and the dipolar attractions, yielding
the expression

utot�r� = uyuk�r� + udip�r� . �10�

utot has the form indicated in Fig. 1. We see a minimum in
the potential, which one might expect to provide a first ap-
proximation to the lattice constant in the 2D colloidal crystal.
In Secs. V and VI we shall compare this minimum to our
simulation results.

III. EXPERIMENTAL

Colloidal crystals underwent self-assembly as a result of
an applied electric field. We used anionic, sulfate stabilized
polystyrene latex particles, either synthesized using a stan-
dard technique, surfactant free emulsion polymerization29 in
the case of �=757 and 945 nm, or particles produced by the
same method but purchased from Microparticles GmbH for
�=1390 and 2070 nm.

Particle electrophoretic mobility was measured using a
Brookhaven Zetaplus light scattering instrument. Particle
sizes were determined by scanning electron microscopy, ei-
ther in-house using a Jeol JSM-6330F, in the case of �
=757 and 945 nm or by Microparticles GmbH for �=1390
and 2070 nm are listed in Table I. Experiments were per-
formed with dilute aqueous suspensions �0.5–1.5 wt %�.
Schematics of the experimental setup are shown in Fig. 2.
All glass surfaces were chemically washed with 0.1M KOH
and washed with copious quantities of MilliQ water. Par-
ticles were deionized by direct contact with ion exchange
beads before being made up to the desired electrolyte con-
centration with KCl. Very low salt conditions are required as
even moderate �mmol� salt concentrations lead to electrohy-
drodynamic pattern formation due to ion flow.30,31 For fur-
ther details on the experimental setup and procedure the
reader is referred to Snoswell et al.11

We consider our experiment as a 2D system. However,
occasionally we notice some overlap on the crystalline rafts.
We do not include these results in our analysis. In order to
treat the system in 2D, one might expect the gravitational
length lg=kBT /mg, where m is the bouyant mass of the par-
ticle and g is the acceleration due to gravity, to be much less
than some characteristic length such as the particle diameter.
Due to the fairly small density mismatch between polysty-

FIG. 1. The interaction potentials considered in this system. The Yukawa
repulsion uyuk�r� models the electrostatic repulsions �dotted line, Eq. �1��
and the dipolar attractions are plotted as udip�r� dashed line, �Eq. �4��. These
are combined to yield the total potential utot�r�, solid gray line �Eq.
�10��.This figure corresponds to a particle diameter of �=757 nm and a
field strength E=30 kV m−1
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rene and water, in fact even for the largest particles �
=2070 nm, lg�0.87�. However, the dipolar interactions be-
tween the particles are attractive in-plane, but strongly repul-
sive in the vertical direction. This promotes the formation of
rafts and “sheets,” and these large assemblies of many par-
ticles have very small gravitational lengths. Thus we argue
that the system behaves in a quasi-2D manner. The lattice
parameter d was taken as the average of typically ten crys-
talline rafts, measured across the raft, of around ten lattice
spacings. The response to changing the electric field strength
was determined to be less than 100 ms, we waited 5s after
changing the field strength before acquiring data.

IV. MONTE CARLO SIMULATION

We use standard MC simulations in the NVT
ensemble.21 The particles interact via Eq. �10� in two dimen-
sions. To mimic the experiments, we initialize the system in
a random configuration at a relatively low concentration, cor-
responding to an area fraction �=0.05–0.3. We confirmed
that different area fractions gave indistinguishable results,
however, smaller area fractions often led to longer equilibra-
tion times. The attractive interactions cause the particles to
approach one another and form crystallites, which then coa-
lesce to form crystalline rafts, which contain of order of 100
particles, in a qualitatively similar way to the experimental
system. Each simulation was equilibrated for typically
30 000 MC moves per particle, followed by 3000 produc-
tion moves per particle. We recall that a potential of the form
1 /r3 converges in 2D. The lattice constant for this 2D hex-
agonal crystal was taken as

d =
	0

brg�r�dr

	0
bg�r�dr

, �11�

where g�r� is the pair correlation function and b is the mini-
mum between the first and second peaks of g�r�.

We found that, when we used N�200, typically one
crystalline domain was formed around the center of the
simulation box. We therefore do not use periodic boundary
conditions and consider the lattice spacing of the single crys-
tal formed in the simulation. One parameter is the number of
particles typically present in each crystalline domain. This is
estimated to be around N=10025 from experimental data
�see Fig. 3�. This value is governed by the overall concen-
tration of the colloidal suspension. We considered the effects
of varying N as shown in Fig. 4. The results of a consider-
able range of N resulted in a variation of a around one per-
cent in d for the �=945 nm system for a field E
=20 kV m−1. Each simulation was repeated four times ex-
cept N=576. We found a slight trend to tighter binding for
larger N, however, as shown in Fig. 4; this effect is rather
small. We henceforth use one simulation per state point un-
less otherwise stated. The slight scatter in the simulation data
is perhaps indicative the existence of different “magic num-
bers” for these crystalline rafts.32 These may be thought of as
2D hexagonal clusters, whose magic numbers, i.e., low en-
ergy states, are expected to include 7, 19, 37¯ Close to a
magic number the binding may be expected to be relatively
tighter. A more detailed exploration of this phenomenon lies
beyond the scope of this work. Overall, the variation in d as
a function of N is smaller than the experimental scatter,
nonetheless, we take both N=72 and N=144 values for d
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FIG. 2. �Color online� A schematic of the experimental setup, �a� side view
and �b� plan view. The electric field is assumed to be constant across the
observation region, as shown in �b�. �b� depicts the quadrupolar electrode
configuration ��a�,�b��, ��c�,�d��.

C

FIG. 3. �Color online� Images of crystal rafts for the �=945 nm system for
applied fields of 29.0 and 80.0 kV m−1 for �a� and �b�, respectively. Scale
bars=10 �m. �c� snapshot from MC simulation for same system for a field
of 30.0 kV m−1 and N=144.

FIG. 4. �Color online� Change in the lattice constant for simulated systems
of different sizes. Here �=945 nm and a field strength E=20 kV m−1. Each
run was repeated four times except N=576. Error bars denote standard de-
viations over the results from different runs. Dashed line is solely a guide to
the eyes.
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when comparing with experimental data. The slightly larger
value for N=32 in Fig. 4 is attributed to the small size of the
crystalline raft, such that the surface particles which are more
widely spaced make a greater contribution. The domain size
is of the order of 100 particles, thus, for larger N, defects and
grain boundaries may lead to a smaller contribution to the
measurement of d. This also applies to the experimental data.

For fitting, all parameters are known, except the Debye
length �−1, which we take as a free parameter for each par-
ticle size and salt concentration, although we note that the
effective colloid charge is itself a function of the Debye
length, Eq. �3�. It has previously been shown that compari-
son of simulation and experimental data can yield a reason-
able local measure of the Debye length.33 Furthermore, in
the region of the sample in which the electric field is applied,
the colloid volume fraction is much higher, and due to the
colloidal counter ions the ionic strength may increase, lead-
ing to a reduction in the Debye length with respect to the
bulk. However, it is the Debye length in this region which is
relevant for the effective colloid-colloid interactions. The
bulk Debye length that may be determined, for example,
from conductivity measurements, may therefore be taken
only as an upper bound. System parameters for different par-
ticle sizes are tabulated in Table I and the Debye length is
plotted in Fig. 5�a�; the contact potential of the Yukawa in-
teraction �Eq. �2�� in Fig. 5�b� are plotted as a function of
particle diameter.

Clearly, our MC simulations may be expected to provide
a reasonable treatment of the crystalline rafts in �quasi-�
equilibrium, rather than to describe the formation process.
We therefore restrict our analysis to a simple characterization
of the crystal rafts and primarily consider lattice spacing. We
furthermore note both here and in a previous work11 that
considerable variation in shapes of crystalline rafts was ob-
served, but that this had little impact on the measurement of
the lattice spacing d. Likewise, at the level of this work, we
neglect possible local variations in d due to the proximity of
an interface. In any case we note that for display applica-
tions, all lattice spacings contribute to the diffraction. A few
words on equilibration are in order. This applies both to the
experimental system and to the simulations. Neither system
is strictly in equilibrium; in that case we might expect a
rather regularly shaped raft such as a hexagon. However, the

insensitivity of the lattice parameter either as a function of N
�Fig. 4� and the very close agreement between statistically
independent simulation runs lead us to conclude that our
approach is sufficient to compare lattice parameters between
experiment and simulation.

V. RESULTS

The effect of changing the electric field strength is
readily demonstrated in Fig. 3, which shows optical micro-
scope images of the region of the sample in which the field is
applied. Two field strengths are shown, �a� 29 kVm−1 and
�b� 80 kVm−1 for �=945 nm and we see a correspondingly
tighter lattice in the case of the higher field strength. Similar
behavior was observed in Ref. 11. Figure 3�c� illustrates
simulated coordinates for 	yuk=5.78�103kBT, ��=28.4, and
	dip=50.1kBT, which corresponds to E=29.0 V m−1 for the
�=945 nm system �see Table I�.

A more quantitative comparison between experiment and
simulation is shown in Fig. 6, which plots the radial distri-
bution function g�r�. We see that the structure appears to be
crystalline, with reasonably long-ranged correlations, al-
though, as is clear from Fig. 3, the system is too small to test
for truly long-ranged order. We thus note that it is difficult to
distinguish the true crystal from a hexatic phase in this sys-
tem. However, our motivation is to model the experimental
system, with N=10025 and thus we argue that identifica-
tion of the hexatic phase lies beyond the scope of this work.

Having illustrated the general behavior of the system, we
now turn our attention to the fitting of the experimental data,
with the model described in Sec. II. The experimental data
was fitted to the theory by taking the Debye length as the
fitting parameter.

The main results are shown in Figs. 7 and 8 for �
=757 and 945 nm, and �=1390 and 2070 nm systems re-
spectively. These concern the lattice parameter d as a func-
tion of applied field strength E. In general, the simulation is
able to capture the behavior of the system in a reasonably
quantitative manner. Furthermore, simply plotting the mini-
mum in the potential umin given by Eq. �10� provides a first
approximation to the lattice constant d. Figure 7�a� shows the
results for �=757 nm particles. Due to the small particle
size and the inverse cubic dependence of the strength of the
dipolar attractions on the particle diameter, as characterized

(b)(a)

FIG. 5. �Color online� �a� The Debye length �−1 fitted from MC simulation
as a function of particle size. Dotted line denotes �−1=40 nm taken for the
simulations in Sec. VI. Error bars denote the uncertainty in the Debye length
resulting from the fitting in Figs. 7 and 8. �b� The contact potential of the
Yukawa interaction �	yuk �Eq. �2�� as a function of particle size. We include
�=400 nm for which we take the Debye length �−1=40 nm. The straight
line is fit of the function �	yuk���=A�b, where the fitted parameters are A
=11.11.1 and b=0.910.01.

FIG. 6. �Color online� Radial distribution functions for an applied field of
E=30.7 kV m−1 for the �=2070 nm system. Circles are experimental data
and the line is MC simulation for N=144. Arrows denote the first few peaks
of a hexagonal lattice, d ,�3d ,2d ,�7d ,3d¯.
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by �dip �Eq. �6��, the attraction for a given field strength is
comparatively small, so we find relatively larger lattice pa-
rameters for this system. At low field strengths �E
�20 kV m−1� we see an increase in the lattice constant for
both the experimental data and the simulation, compared to
the minimum in the potential. Apparently, as the crystal ap-
proaches melting, fluctuations become more pronounced,
leading to an increase in d, which is not captured in Eq. �10�,
or perhaps a molten surface layer increases the apparent
value of d. We leave this intriguing question for further in-
vestigations. Meanwhile, at high field strengths, we find
some deviation between simulation, experiment, and Eq.
�10�. Apparently, due to the long ranged nature of the inter-
action, second nearest neighbors experience an attraction of
sufficient strength that the crystal is compressed by its own
cohesion, leading to a smaller lattice constant.

In the case of the �=757 nm particles, we find that for
small field strengths, �E=10 kV m−1�, the system does not
form crystallites, rather it remains as a colloidal liquid. We
determined this both by experimental observation and with
simulations. In the latter case, we identified crystallization
with a splitting in the second peak of the pair correlation
function g�r�. The kink around E
20 kV m−1 in Fig. 7 is
likely related an artifact of measuring multiple rafts, so de-
fects and grain boundaries contribute to the value of d. At
weak field strengths the rafts tend to be smaller, thus increas-
ing this effect.

At larger particle sizes, �Fig. 8� we again see reasonable
agreement between experiment and simulation, albeit with
some deviation between simulation and Eq. �10� at higher
field strengths, as the simulation predicts a smaller lattice
constant than that observed in the experiments. However, for

the �=1390 nm system, in particular, in fact Eq. �10� pro-
vides a more accurate description of the experimental data.
Apparently some of our assumptions in the simulations, per-
haps that of pairwise additivity, begin to break down at high
field strengths. According to Eq. �10�, the potential at the
minimum of the attractive well is some 250kBT for an ap-
plied field of 50 kV m−1 for �=1390 nm. Thus we conclude
that for moderate interaction strengths, Eq. �10� provides a
reasonable description of the system.

We now consider the dependence of the system upon the
colloid diameter �. First, we see from Fig. 5�a� that the ab-
solute value of the �fitted� Debye length �−1 does not change
significantly for all the four particle sizes studied. Thus, the
reduced inverse Debye length �� is linear in �. The contact
potential ��yuk has an approximately inverse cubic depen-
dence on � for ���1, Eq. �2�, but also depends on the
�effective� charge Zeff. Plotting ��yuk as a function of � in
Fig. 5�b� we find an approximate power law dependence
with an exponent of b=0.910.01.

As noted above, the prefactor of the dipolar attraction,
�dip �Eq. �6��, has �−3 dependence. Although the electrostatic
interactions are non-negligible, we nonetheless expect from
Eq. �6� that upon decreasing � we find a relatively larger
lattice constant for a given field strength, and that larger field
strengths are required to provide sufficient interactions that
the crystalline rafts form. This we indeed find, as shown in
Figs. 7 and 8, and also in the next section.

VI. OPTIMIZING THE TUNABILITY

Now we note that this system has optical display appli-
cations, due to the possibility of externally tuning the lattice
parameter d. These applications may be most usefully real-
ized when the possibility to tune the system is maximized,
i.e., when the range of d is maximized. We are therefore
motivated to consider a range of particle sizes and calculate
the range of tunability of d. Now � sets a lower bound to d
while the upper bound is set by the melting transition, which
can be determined by MC simulation.

Hitherto, we used the Debye length �−1 as a fitting pa-
rameter. However, as Fig. 5�a� shows, there is relatively little
change in the absolute value of the Debye length for the
range of colloid diameters investigated. We therefore fix
�−1=40 nm and vary the colloid size, and apply the same
methodology as that outlined in Secs. II and IV in calculating
the response for �=400–2000 nm colloids to an external
electric field. While an accurate determination of the melting
transition is complicated by the small system size, melting is
approximately determined by the splitting of the second peak
in the radial distribution function g�r�.34 We decrease the
electric field to identify the weakest field at which the second
peak in g�r� exhibits clear splitting �Fig. 9�a�, inset�, thus
yielding d�Emin�, the lattice spacing just prior to melting. The
melting value of the lattice parameter dm is taken as

(b)(a)

FIG. 7. Experimental results compared to MC simulation and the minimum
in the effective potential. �a� 757 and �b� 945 nm diameter colloids. Filled
squares are N=72 while crossed are N=144 from MC simulation. Circles
are experimental data. Grey lines are the minimum of Eq. �10�. Error bars in
the experimental data are standard deviations.

(b)(a)

FIG. 8. Experimental results compared to MC simulation and the minimum
in the effective potential. �a� 1390 and �b� 2070 nm diameter colloids. Filled
squares are N=72 while crossed are N=144 from MC simulation. Circles
are experimental data. Gray lines are the minimum of Eq. �10�. Error bars in
the experimental data are standard deviations.

154901-6 Elsner et al. J. Chem. Phys. 130, 154901 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



dm = d�Emin� +
d�Emin + �E�

2
, �12�

where �E is the amount by which the field strength is varied
between simulations, typically 0.5–1.0 kV m−1. The error in
dm is then taken as dm−d�Emin�.

In terms of the particle diameter, dm grows considerably
at small sizes, as the relatively larger Debye length leads to a
minimum in the effective potential at relatively larger dis-
tances. However, we recall that our analysis suggests a
roughly �3 dependence of �dip the strength of the dipolar
attraction. This suggests that we might expect a stronger
electric field to be required for relatively small colloids and
indeed we find that a higher field is required to provide suf-
ficient cohesive energy to hold the colloids together in the
crystal-like rafts, so at 100 kV m−1, a value we take as a
reasonably accessible maximum field strength, the lattice
spacing is still around d100�1.6� for �=400 nm, where d100

is the lattice spacing corresponding to a field strength of
100 kV m−1. Conversely, at larger particle sizes, the Debye
length is relatively small, so we find, even at melting, that
the lattice constant only approaches around 1.2�. We note
that, at high field strengths, the assumptions of Sec. II will
ultimately break down. The results presented in Figs. 7 and 8
show that E�100 kV m−1 is reasonable, at least for �
�757 nm, supporting our conclusion of a maximum in tun-
ability around 1.2�. We show the values of the well depth of
Eq. �10� at melting for the different experimental systems in
Table I, which indicates a trend toward deeper wells for
larger particles, i.e., shorter ranges of the repulsive interac-
tion relative to the particle size.

Larger field strengths may be expected to yield greater
tunability for the small particle sizes. Since the overall mini-
mum lattice spacing is d=�, in principle smaller particles
have greater tunability, however experimental observations
reveal intense fluid turbulence disrupts crystal formation at
higher field strengths. This is caused by large field gradients
at the electrode edges that induce strong dielectrophoretic
forces. In addition, higher field strengths can cause bubble
formation by electrolysis and electrochemical degradation of
the electrodes.

The result is thus that intermediate particle sizes have
the highest degree of tunability for a given maximum field

strength. Here we considered 100 kV m−1, which leads to a
maximum tunability of dm /d100 in the range of 1000 nm
1000 nm���1500 nm.

VII. CONCLUSIONS

2D colloidal crystalline rafts with externally controllable
properties have been modeled with MC simulations and the
resulting lattice constant, both experimental and simulated,
has been compared with the minimum in the effective inter-
action potential. In treating the effective colloidal interac-
tions, we find that a straightforward, pairwise approach pro-
vides a reasonable description in describing the lattice
parameter. The minimum in the effective interaction formed
from combining the electrostatic repulsions and dipolar at-
tractions is a useful means to approximate the lattice param-
eter, although close to melting fluctuations lead to a larger
value in the lattice parameter than this minimum. Con-
versely, at high field strengths, our treatment appears to be
less accurate. Apparently, higher order terms which we have
not accounted for may become important, such as nonlinear
Poisson–Boltzmann contributions to the electrostatic interac-
tions, leading to deviations from the Yukawa form �Eq. �1��
�Ref. 22� or limitations in our pairwise treatment of the di-
polar attractions.23 Other possibilities include inaccuracies in
our assumptions for the effective colloid charge �Eq. �3��,
limitations of the 2D behavior of the experimental system.
Perhaps due to a cancellation of errors, at high field
strengths, the minimum in the effective interaction can some-
times provide a more accurate value of the lattice parameter
than the simulations.

Another important assumption lies in our derivation of
the electrostatic interactions. While their Yukawa-like form
is well-accepted,25 the values of the effective colloid charge
comes from Eq. �3�. We note that the Debye length we de-
termine seems rather constant across the four particle sizes
considered �Fig. 5�a��, which suggests that out approach is at
least consistent. However challenging it may be, a more
quantitative measurement of the local ion concentration in
the vicinity of the crystalline rafts is desirable and will be
considered in the future. Furthermore, there may be some
variation in the value of Zef f. In fact this should affect all
state points in a similar manner �for each particle size�, there-
fore, we anticipate a similar outcome, but that a different
value might be arrived at in the fitting of the Debye length.
However, owing to the relatively short-ranged nature of the
interaction, the effect of a different value for the effective
charge is unlikely to impinge significantly the Debye length
and should have a negligible effect on our main results.

We also assumed that a given system is described by one
single Debye length. In fact, in the counterion-dominated
regime, the Debye length is a function of colloid
concentration,35 an effect we neglected. This might lead to a
tightening at higher colloid concentration �i.e., high field
strength�, which may be expected to lead to an increase in
deviation with the experimental results �Figs. 7 and 8�. Nev-
ertheless, varying the Debye length as a function of local
colloid concentration would be worth considering in the fu-
ture.

FIG. 9. �Color online� �a� The lattice spacing around melting �dm, filled
squares� and at applied field of 100 kV m−1, as determined from MC simu-
lation �crosses� and from Eq. �10�, as a function of particle size. The inset
shows a radial distribution function close to melting ��=1000 nm,E
=11.0 kV m−1�. The arrow indicates split second peak. �b� The tunability
ratio as a function of particle size. Connecting lines are guides to the eyes.
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We extended our approach to a range of colloid sizes, to
optimize the lattice tunability for display applications. Tun-
able 2D crystal rafts can behave as tunable diffraction grat-
ings capable of filtering white light into visible colors.11

Similar tunable diffraction has been proposed for display
devices.36The range of colors obtainable for a given geom-
etry is governed by the lattice tunability. Figure 9�b� demon-
strates that lattice tunability in our system is maximized for
particles of approximately 1–1.5 �m. Only higher field
strengths applied to smaller particles can increase the lattice
tunability. As already indicated, higher field strengths are not
practical in the current experimental system, however, in fu-
ture experiments metal coated colloids would exhibit much
stronger dipolar interactions, enabling a reduction in field
strength for a given attraction. Regardless, our methodology
illustrates using the well-developed machinery of effective
colloidal interactions as a means to model potentially com-
plex interactions, useful for engineering purposes.
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