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Abstract
We study the structure of colloidal fluids with reference to colloid–polymer mixtures. We
compare the one-component description of the Asakura–Oosawa (AO) idealization of
colloid–polymer mixtures with the full two-component model. We also consider the Morse
potential, a variable range interaction, for which the ground state clusters are known. Mapping
the state points between these systems, we find that the pair structure of the full AO model is
equally well described by the Morse potential and the one-component AO approach. We employ
a recently developed method to identify in the bulk fluid the ground state clusters relevant to the
Morse potential. Surprisingly, when we measure the cluster populations, we find that the Morse
fluid is significantly closer the full AO fluid than the one-component AO description.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Although in principle colloidal dispersions are rather complex
multi-component systems, the spatial and dynamic asymmetry
between the colloidal particles (10 nm–1 μm) and smaller
molecular and ionic species has led to schemes where the
smaller components are formally integrated out [1]. This
leads to an effective one-component picture, where only
the effective colloid–colloid interactions need be considered.
The behaviour in the original complex system may then be
faithfully reproduced by appealing to liquid state theory [2]
and computer simulation [3]. Since the shape of the
particles is typically spherical, and the effective colloid–colloid
interactions may be tuned, it is often possible to use models of
simple liquids to accurately describe colloidal dispersions.

Central to this one-component approach is the use
of a suitable colloid–colloid interaction u(r). Notable
early successes include the Derjaguin, Landau, Verwey
and Overbeek theory of charged colloids [4] and the
Asakura–Oosawa (AO) theory of colloids in a solution of
polymers [5, 6], subsequently popularized by Vrij [7]. While

theories such as these have been used to describe colloidal
model systems in which the interactions may be tailored with
very considerable success [8–10], the general situation is often
considerably more complex.

In the colloid–polymer mixtures of interest here, the
effective colloid–colloid interactions are set by the polymer
chemical potential. One imagines a polymer reservoir coupled
to the colloidal suspension, in which, if the polymers are ideal
as assumed by AO, then the polymer chemical potential is
proportional to the concentration. In practice, experimental
systems seldom feature coupled polymer reservoirs, so one is
often limited to knowledge of the polymer concentration in the
sample cell; for a given polymer concentration, the chemical
potential varies with colloid volume fraction, due to the
volume excluded to the polymer by the colloids. The volume
accessible to polymer is also dependent upon phase separation
and colloidal crystallization. In other words, the effective
colloid–colloid interaction can vary with colloid concentration
and also change as a function of time, giving rise to novel
kinetic pathways and (unlike simple atomic substances), a
triple coexistence region [11]; meanwhile external fields such

0953-8984/10/104119+07$30.00 © 2010 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/22/10/104119
mailto:paddy.royall@bristol.ac.uk
http://stacks.iop.org/JPhysCM/22/104119


J. Phys.: Condens. Matter 22 (2010) 104119 J Taffs et al

as gravity may couple with the multi-component nature of
the colloid–polymer system to yield novel phenomena such as
floating colloidal liquids [12].

Even in the case of a one-phase colloidal fluid in
coexistence with a polymer reservoir, for polymer–colloid size
ratio q > 0.154 [13], the effective colloid–colloid interaction
has a many-body component and thus is dependent upon
colloid volume fraction, while for smaller size ratios the
one-component mapping has been shown to be exact [14].
Nevertheless, one may integrate out the polymer degrees of
freedom to arrive at an effective one-component description
for the colloids, as given by AO [6] and Vrij [7]. It
is worth noting that there is more than one approach
to determining the effective one-component interaction in
a multi-component system, and that these do not always
give the same result [15]. The effective one-component
description has since been extended to include these many-
body effects [16–19]. Other important departures from
the assumptions of Asakura and Oosawa include non-
ideal polymer–polymer interactions [15, 20], which have
considerable implications for phase behaviour and interfacial
properties [21] along with electrostatic interactions between
the colloids [22].

The validity of the one-component approach in describing
the colloid–colloid interactions has also been investigated
experimentally. The interaction between a colloid and a
glass wall can be accurately measured with total internal
reflection microscopy [23], while the interaction between two
colloids confined to a line can be measured using optical
tweezers [24, 25]. An alternative approach is to measure
correlation functions and invert them to extract the effective
potentials. Traditionally this has been achieved by scattering
techniques that measure the reciprocal space structure factor
S(k) [2, 26]. Another means is to determine the structure
in real space in 2D and 3D at the single particle level using
optical microscopy [27, 28], after making some assumptions
about the system, one may deduce the effective colloid–colloid
potential. This may be done with sufficient precision that
interaction potentials can be quite accurately determined both
for purely repulsive systems [28, 29] and for systems with
attractive interactions [30].

The possibility of direct visualization of colloidal
fluids also allows, for example the clusters formed to be
studied [31–33]. Lu et al explored the idea, introduced by
Noro and Frenkel in their ‘extended law of corresponding
states’ [34], that the structure of these dilute attractive
fluids (the so-called energetic fluid regime [35]) is somewhat
insensitive to the exact nature of the potential [32]. We
have also recently argued that the (known) ground state
clusters formed by systems interacting under the Morse
potential (figure 1) are also relevant to colloid–polymer
mixtures. Interestingly, recent work suggests that in fact,
hard core systems such as colloid–polymer mixtures might
exhibit somewhat richer (degenerate) topologies of ground
state clusters, as more than one structure can have identical
numbers of bonds [36].

Here, we investigate the validity of the one-component
approach in colloid–polymer mixtures by comparing the
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Figure 1. The ground state clusters for the short ranged Morse
potential (ρ0 = 25.0) for m < 14 particles. Here we follow the
nomenclature of Doye et al [38].

full Asakura–Oosawa multi-component model with explicit
polymers and the one-component AO model [6, 7]. Given
a suitable choice of parameters, the variable ranged Morse
potential can provide a good approximation to the one-
component AO potential. In addition to the fact that the ground
state clusters are known for the Morse potential, we note that
its continuous form is amenable to Brownian and molecular
dynamics computer simulations. We therefore also compare
the Morse potential by applying the law of corresponding
states to map the Morse to the one-component AO interaction.
We consider the structure of the resulting dilute colloidal
fluids. In addition to conventional pair correlation function-
based methods, we employ a recent developed method
which identifies structures topologically equivalent to isolated
clusters [37].

This paper is organized as follows. In section 2 we
introduce the simulation methodology and our approach for
comparing different interaction potentials, our results are
presented in section 3 and we conclude with a discussion in
section 4.

2. Simulations and interaction potentials

The seminal theory of colloid–polymer mixtures is that of
Asakura and Oosawa [5, 6]. Here colloids are treated as hard
spheres with no permitted overlap. Polymers are ideal, and
may freely overlap with one another, but the polymer–colloid
interaction is also hard, in that no overlap is permitted. That
is to say, the colloid–colloid interaction uCC, colloid–polymer
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interaction uCP and polymer–polymer interaction uPP read

βuCC(r) =
{

∞ for r � σ

0 for r > σ

βuCP(r) =
{

∞ for r � (σ + σP)/2

0 for r > (σ + σP)/2

βuPP(r) = 0.

(1)

where r is the centre to centre separation of the two
colloids/polymers and β = 1/kBT , where T is temperature,
kB is Boltzmann’s constant. σ and σP are the diameters of the
colloids and polymers respectively.

Some comments on the derivation of the one-component
description are in order. For a more complete description the
reader is referred to Dijkstra et al [13]. The Hamiltonian of the
AO model is thus

H = HCC + HCP + HPP (2)

where

HCC =
NC∑

uCC(r) (3)

HCP =
NC∑ NP∑

uCP(r) (4)

HPP =
NP∑

uPP(r) = 0 (5)

where NC and NP are the respective numbers of colloids and
polymers. Dijkstra et al cast the thermodynamic potential F of
the colloid–polymer system as

exp[−β F] =
∞∑

NP=0

zNP
P

NC!�3NC
C NP!

∫
V

dRNC

∫
V

dRNP

× exp[−β(HCC + HCP)] (6)

= 1

NC!�3NC
C

×
∫

V
dRNC exp[−β H EFF] (7)

where zP is the polymer fugacity �C, is the thermal De Broglie
wavelength of the colloids, RNC and RNP are the coordinates of
the colloids and polymers respectively. H EFF = NCC + � is
the effective Hamiltonian of the colloids.

Now � is the grand potential of the fluid of ideal polymer
coils in an external field of NC colloids with coordinates R, and
may be expanded as

� = �0 + �1 + �2 + . . . (8)

where �0 is a 0-body term (the Grand potential of an ideal
polymer system) �1 is a 1-body term related to the volume
excluded by the NC colloids and �2 is the two-body term.
Dijkstra et al show that all higher order terms are zero for
polymer colloid size ratios q = σP/σ < 0.154 [14]. The two-
body term

�2 =
∑
NC

βuAO(r) (9)

where

βuAO(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

π(2RG)3zP

6

(1 + q)3

q3

×
{

1 − 3r

2(1 + q)σ
+ r 3

2(1 + q)3σ 3

}
for σ < r � σ + (2RG),

0 for r > σ + (2RG).

(10)

Now the polymer fugacity zP is equal to the number density
ρPR of ideal polymers in a reservoir at the same chemical
potential as the colloid–polymer mixture. Thus within the AO
model, the effective temperature is inversely proportional to
the polymer reservoir concentration. The interaction induced
by the polymers in equation (10) is identical to that given by
AO [6] and Vrij [7].

We also use the Morse potential which reads

βuM(r) = βεM exp[ρ0(σ − r)]{exp[ρ0(σ − r)] − 2} (11)

where ρ0 is a range parameter and βεM is the potential well
depth. We set ρ0 = 25.0 to simulate a system with short ranged
attractions similar to a colloid–polymer mixture.

2.1. Comparing different systems

In order to match state points between the Morse and
one-component Asakura–Oosawa interactions, we use the
extended law of corresponding states introduced by Noro and
Frenkel [34]. Specifically, this requires two interactions to have
identical well depths and reduced second virial coefficients B∗

2
where

B∗
2 = B2/

2
3πσ 3

EFF (12)

where σEFF is the effective hard sphere diameter and the second
virial coefficient

B2 = 2π

∫ ∞

0
drr 2[1 − exp(−βu(r))]. (13)

The effective hard sphere diameter is defined as

σEFF =
∫ ∞

0
dr

[
1 − exp (−βuREP(r))

]
(14)

where the repulsive part of the potentialuREP is where u(r) >

0. Thus we compare different interactions by equating B∗
2 and

σEFF. The latter condition leads to a constraint on number
density

ρEFF = Nπσ 3
EFF

6V
(15)

where V is the volume of the simulation box.

2.2. Simulation details

For the one-component systems, we use standard Monte Carlo
(MC) simulation in the NVT ensemble [3] with N = 2048
particles. Each simulation was typically equilibrated for 107

MC moves and run for a further 107 moves. For each state point
we performed ten independent simulation runs. We confirmed
that the system was in equilibrium on the simulation timescale
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by monitoring the potential energy. The Morse potential is
truncated and shifted at r = 2.5σ . In the case of the full
AO system, we use Monte Carlo simulation, with polymers
included grand-canonically [3, 39]. The interaction potential
for the one-component AO is taken as equation (10) with
the additional hard sphere colloid–colloid interaction uCC(r)

(equation (5)).
We match the Morse and one-component AO using

equations (12), (15) by requiring the interactions to have the
same well depth We set a well depth of 2.0kBT and colloid
volume fractions of φC = πσ 3ρC/6 = 0.05, φC = 0.25 and
φC = 0.445, where ρC is the colloid number density. For
the Morse interaction, with range parameter ρ0 = 25.0, this
leads to an effective hard sphere diameter σEFF ≈ 0.9696σ

(equation (14)). Applying equation (15) we therefore have a
slightly higher volume fraction in the Morse system of φM ≈
1.1097φC. In the one-component AO system, these Morse
parameters map via equations (10) and (12) to a polymer–
colloid size ratio of q ≈ 0.2575 and polymer reservoir number
density ρPR ≈ 0.5597σ−3

P . It is worth noting that there is
some sensitivity in the mapping we have used to the depth
of the attractive well. We have taken a value of βεM = 2.0,
which we fix throughout this work. However, the ‘hardness’ of
the Morse potential depends upon βεM, as, consequently, does
the effective hard sphere diameter. In principle, one should
therefore repeat the mapping for each βεM.

The full AO system is challenging to simulate, especially
when there is a considerable size discrepancy between the
colloids and polymers, leading to very large numbers of
particles in the system [18]. Of course, this is one of the
attractions of using a one-component description. Here we
could only equilibrate the system to our satisfaction for the
higher densities, φC = 0.25 and φC = 0.445, owing to the
vastly reduced number of polymers at higher colloid density.
We used N = 256 and N = 512 for φC = 0.25 and φC =
0.445 respectively. The system was equilibrated for 3 × 107

MC moves of either polymer or colloid in each case. Unlike the
one-component systems, two simulations per state point were
performed in the case of the full AO system. In comparing
the full AO system with the one-component systems, we only
consider the colloids and ignore the polymer coordinate data.

2.3. The topological cluster classification

To analyse the structure, we identify the bond network
using the Voronoi construction. Having identified the bond
network, we use the topological cluster classification (TCC)
to determine the nature of the clusters in the bulk fluid [37].
This analysis identifies all the shortest path three, four and five
membered rings in the bond network. We use the TCC to find
clusters which are global energy minima of the Morse potential
for ρ0 = 25.0. These clusters are shown in figure 1. We
identify all topologically distinct Morse Clusters. In addition,
for m = 13 clusters we identify the FCC and HCP thirteen
particle structures in terms of a central particle and its twelve
nearest neighbours. We illustrate these clusters in figure 1. For
more details see [37]. We found relatively little clustering at
the moderate attractions βε = 2.0 at lower and intermediate

Figure 2. Interaction potentials used: Morse (blue) and
one-component Asakura–Oosawa (cyan). Both are scaled by the
effective hard sphere diameter σEFF.

densities, thus we present TCC results for the highest density
studied, φC = 0.445.

3. Results and discussion

We begin our presentation of the results by comparing the
pair correlation functions of the various systems at differing
densities, followed by the TCC analysis.

Pair correlation functions are shown in figure 3. At low
density, g(r) ≈ exp[−βu(r)]. This is illustrated in both
cases in figure 3(a) (φC = 0.05), in the form of a strong
peak at contact, reflecting the short ranged nature of these
attractions. There are some minor differences. These are
in general consistent with the differences obtained from the
potentials, figure 2, upon taking the low density limit, g(r) ≈
exp[−βu(r)]. For example, the slighter softer Morse potential
leads to a slightly slower decay at r < σ . Likewise, in the
range 1.1σ � r � 1.2σ , the AO decays to unity rather slower
than the Morse, reflecting the greater magnitude of the AO in
that range. In general, however, the agreement between the
Morse and AO systems is good.

We now turn to higher densities, in particular to φC = 0.25
(figure 3(b)). In this case, we were able to equilibrate the
full AO system in addition to the one-component descriptions.
Packing leads to a second peak around 2σ . Again, we see a
similar behaviour between the different systems. Significantly,
the small differences between the g(r)s, comparing Morse
to firstly the one-component AO and then the full AO, are
similar. That is to say, the one-component AO, which, for
example does not include many-body interactions [16, 18],
shows discrepancies comparable to the Morse potential in its
description of the full AO system.

At the highest density studied (φC = 0.445), overall
we find a similar behaviour, as may be seen in figure 3(c).
This is not altogether surprising, as in dense liquids, the
structure is well known to be largely dominated by the hard
core [40]. Some differences are, however apparent. The Morse
system has a weaker first peak, than either the one-component
or full AO systems. This is likely due to the lack of an
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a

b

c

Figure 3. Pair correlation functions at various densities. (a) Low
density, φC = 0.05, (b) moderate density (φC = 0.25) and (c) high
density (φC = 0.445). The g(r) for the Morse potential is shown in
dark blue (dashed), the full AO system in black and the pale blue is
the one-component AO.

infinitely hard core in the Morse interaction. The first peak
notwithstanding, the differences between all three systems are
comparable. In comparing the one-component AO and full AO,
our results are compatible with the results of Dijkstra et al,
who found that g(r)s produced from the two descriptions were
indistinguishable in the case of q = 0.15 where the one-
component description is exact [14].

We now turn our attention to the cluster populations
in the dense system (figure 4). In all these systems, a
range of different clusters are found, with none dominating.
Thus we argue, that when considering energetically locally
favoured structures (i.e. clusters), it is important to consider the

Figure 4. Population of particles in a given cluster, for φC = 0.445.
Nc is the number of particles in a given cluster, N the total number of
particles sampled. Here we consider only ground state clusters for
the Morse ρ0 = 25.0 system. Dark blue denotes Morse, turquoise the
full AO and light blue the one-component AO.

possibility that more than one topology may be important. The
overall behaviour between the systems is similar. Among the
more populous, smaller clusters, the 7A pentagonal bipyramid
has a rather low population. However 7A is also found as
part of larger clusters, notably 8B. According to our counting
algorithm, if a given particle is part of both a 7A and 8B cluster,
it is taken as 8B only. A few particles are found as FCC crystal
fragments (we found no HCP type environments).

In comparing these systems we see that the one-
component AO forms rather fewer clusters for 8 � m � 10
than the other systems, and none at higher m. Our statistics
are necessarily more limited for the full AO system, which we
believe restricts our ability to determine the population of rarer,
higher order clusters. For m � 11, the Morse and full AO have
rather similar populations, except that the cluster population in
slightly higher for the Morse system in the case that m � 6. We
thus argue that in this respect the Morse potential accurately
reproduces the full AO model.

4. Discussion and conclusions

We have analysed the pair structure and performed a
topological cluster classification on a range of model systems
for colloid–polymer mixtures. Using the extended law of
corresponding states [34], we have mapped the variable ranged
Morse potential to a well-known one-component model for AO
colloid–polymer mixtures. We have also considered the full
Asakura–Oosawa model. In general, we find good agreement
between all three systems. The relatively small difference in
the pair structure between the slightly soft Morse potential
and one-component AO system seems to be accounted for by
noting the differences in their functional form (figure 2). The
small discrepancies exhibited between the full AO and the one-
component systems favour either. That is to say, our g(r)

results suggest that the Morse potential does as good a job
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of describing the full AO system as the one-component AO
system.

Although the pair structure may be very similar between
these three systems, the topological cluster classification
reveals significant differences. In particular, the one-
component AO system forms fewer higher order clusters for
m � 8 (8B clusters alone account for 20% of the particles in
the other systems) and we detect no clusters at all for m � 10.
In this respect, the Morse potential does a better job than the
one-component Asakura–Oosawa interaction in describing the
full AO system.

Some pointers for further work are considered. Dijkstra
et al [17, 18] have developed an elegant means by which the
many-body effects implicit in the full AO model are taken into
account. It would be most attractive to subject this system to an
analysis similar to that presented here. Recalling that we were
unable to obtain sufficient statistics to calculate a g(r) for the
full AO system for φC = 0.05, we note that accelerated MC
methods such as the cluster move of Vink and Horbach [39]
would be most helpful in generating sufficient statistics.

Moving closer to experiments, non-ideal polymers [20]
and electrostatic interactions [22] may all impact on these
conclusions. We have also considered only a few state points.
Furthermore, we have neglected polydispersity, omnipresent
in experimental colloidal systems, which has the potential to
alter the results of an analysis similar to that carried out here.
Coordinate tracking, particularly in 3D experiments based
around confocal microscopy, is prone to measurement errors of
around 0.02−0.05σ [30]. Work to investigate the sensitivity of
this analysis to such experimental considerations is in progress.
Early indications are that the TCC analysis is surprisingly
robust to experimental tracking errors and polydispersity.

The system we have chosen (probably) does not have
a stable gas–liquid coexistence. However q = 0.2575 is
somewhat above the value of q = 0.154 at which 3-body
and higher order interactions vanish in the AO model [13, 14];
these effects may be non-negligible but the similarity in the
correlation functions we measure suggests that the effects to
not too large, although larger polymers would lead to stronger
many-body effects [18]. Furthermore, larger polymers lead
to such a coexistence between colloidal ‘gas’ and ‘liquid’.
The location of the critical point is known to be strongly
dependent upon the exact model chosen [39, 41]. Moving
closer to the critical point, we expect to find different results
upon comparing the various models.

Finally, we have considered equilibrium fluids. The
behaviour out of equilibrium is most important, particularly
in the case of, for example colloidal gels [42]. However,
we are unaware of suitable simulation models for non-
equilibrium studies, except one-component descriptions with
softened cores [43, 44], and the Morse potential [42].
It is almost necessary to use one-component descriptions
out of equilibrium, due to the degree of computation
required. Moreover, Brownian dynamics, appropriate to
out-of-equilibrium situations, is challenging to implement
with hard interactions. Out of equilibrium, hydrodynamic
interactions may also play a role, and have recently been
applied to attractive colloidal systems [45].
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