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Using mutual information to measure order in model glass formers
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Whether or not there is growing static order accompanying the dynamical heterogeneity and increasing
relaxation times seen in glassy systems is a matter of dispute. An obstacle to resolving this issue is that the
order is expected to be amorphous and so not amenable to simple order parameters. We use mutual information
to provide a general measurement of order that is sensitive to multiparticle correlations. We apply this to
two glass-forming systems (two-dimensional binary mixtures of hard disks with different size ratios to give
varying amounts of hexatic order) and show that there is little growth of amorphous order in the system without
crystalline order. In both cases we measure the dynamical length with a four-point correlation function and find
that it increases significantly faster than the static lengths in the system as density is increased. We further show
that we can recover the known scaling of the dynamic correlation length in a kinetically constrained model, the
two-vacancy-assisted-hopping triangular lattice gas.
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I. INTRODUCTION

A central question in the physics of glass-forming liquids
is whether or not they develop static structure when super-
cooled (or compressed), and whether such structure plays an
important role in the extreme slowing down that occurs as a
system approaches the glass transition. Often we expect the
increase of relaxation time in a system to be accompanied by
an increasing correlation length scale [1,2], and this should be
the case if glassy phenomena are related to some sort of critical
behavior [2]. It is well established that many supercooled
liquids exhibit a growing dynamic length scale [3], but pairwise
correlation functions show little change in the structure upon
cooling [4].

A number of theoretical scenarios have been postulated to
explain glassy behavior. Some include static structure, such
as clusters of locally favored order [5,6] or a mosaic of
finite regions of amorphous order [7]. There are alternative
explanations based on dynamic facilitation effects [8] or a dy-
namical phase transition [9]. Neither of these scenarios require
static structure. Futhermore, it is possible to produce glass-like
behavior with kinetically constrained models [10,11] that are
designed to omit static structure, although these are not derived
from the microscopic behavior of actual glasses.

So the necessity of a growing static length scale is
questionable. There is good evidence that some change in
structure (not necessarily related to a growing length scale)
occurs on dynamic slowing [12–16]. Some numerical studies
indicate a growing static length scale [14–17], and there are
thermodynamic treatments [18] which imply an increasing
length scale (although it is not measured directly from the real
space configuration of particles). Other experimental [19,20]
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and numerical [21] work suggests that this length scale
increases only slightly. There is disagreement over whether
static lengths in glassy systems grow with the dynamical length
scale or not [16,17,21–23].

To determine exactly what is going on we need a technique
that can measure amorphous order directly in a given system.
In some systems there is a clear idea of what this order
should look like, and it can be measured with, for example,
a bond-orientational order parameter [14,16]. The problem in
these cases is that the technique is not general and systems
with such clear and simple ordering may not be characteristic
of glassy systems. A less specific approach is to look for
geometrical motifs [13], although this still requires that we
limit our search to a set of predefined structures. Generalized
order parameters have been suggested: Local “structural
entropy” s2 [16] does not rely on presupposed order, but it
may be confounded by dynamical information and it is only
sensitive to pairwise correlations; the configurational entropy
approach to measuring patch-correlation length [24,25] is
certainly general, although it is computationally unfeasible for
the system studied here. We discuss both of these later in the
text.

It would be useful to have a general method of measuring
structure that does not require us to specify in advance what
we are looking for and that is not blind to things that we
did not expect. Information theory gives us a framework
in which we can look for structure in an order-agnostic
way. Using the concept of mutual information (see, e.g.,
Ref. [26]) we can quantify all of the dependencies between two
multidimensional random variables. This enables us to develop
techniques that are sensitive to higher order correlations and
that do not depend on the structure in the system taking a
presumed form.

We use the mutual information between patches in a
system’s configuration as a general measurement of order.
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We measure this quantity in a model glass-forming system:
a 2D binary mixture of hard disks. The size ratio of the
disk species is varied to alter the amount of hexatic order
in the system. We derive a static length scale from these
mutual information measurements: It grows in tandem with
the hexatic order correlation length in the hexatic system
as density is increased. The mutual information length in
the nonhexatically ordered system varies little as density
is changed. In both cases the growth in the dynamical
length scale significantly exceeds that of the static lengths.
We also apply these methods to a kinetically constrained
model.

The paper is structured as follows. We briefly review the
concept of mutual information and discuss how it can be
used to look for static and dynamic structure in supercooled
liquids. We investigate two systems which exhibit glassy
behavior: a 2D off-lattice binary hard disk mixture and a
kinetically constrained model, two-vacancy-assisted-hopping
triangular lattice gas (on-lattice and also 2D). We describe
the discretization procedure we use to obtain a symbolized
representation of patches in the system’s configuration and
then calculate the mutual information between pairs of patches.
These measurements are used to define a mutual information
length of static order in the system. We investigate the behavior
of this length as the density of the system is varied and compare
the lengths to the dynamic correlation length in the system. The
similarities between this approach and the patch-correlation
length of Ref. [25] will be discussed.

II. INFORMATION THEORY

Here we discuss the application of information theory to
extract a structural or dynamic length scale. The fundamental
information theoretic quantity is the Shannon entropy [27].
The Shannon entropy of a random variable X with a probability
distribution p(x) over a support X is given by

H (X) = −
∑
x∈X

p(x) log2 p(x). (1)

This quantity is larger for a uniform probability distribution
over a broad support (phase space) and smaller when the
support gets smaller, or the distribution more peaked. It is
a measure of the uncertainty of the outcome of drawing a
sample from the distribution.

When measuring structure, we are interested in how the
configuration in one part of a system affects the configuration
in another. We can think about this in information theoretic
terms. If the configuration, X, in some part of the system
(we call this a patch) influences that in another part, Y , then
it will be the case that when X is held constant the range
of possible values of Y is smaller than when X can take any
value. We can quantify this reduction in uncertainty by treating
our configurations as random variables and taking the mutual
information (see, e.g., Ref. [26]).

The mutual information between two random variables
measures the entropy difference between the marginal
probability distribution of a variable and its conditional

distribution:

I (X; Y ) = H (X) − H (X|Y ) = H (Y ) − H (Y |X) (2)

= H (X) + H (Y ) − H (X,Y ) (3)

=
∑

x∈X ,y∈Y
p(x,y) log2

p(x,y)

p(x)p(y)
. (4)

The mutual information can be thought of as a distance
(although not rigorously) between the true joint distribution
of the two variables and the distribution they would have if
they were independent. It will be zero when X and Y are
uncorrelated and will increase as the two variables become
more dependent up to a maximum of H (X) (H (Y )) when X(Y )
is completely determined by Y (X). The mutual information
is symmetric in X and Y .

We have a choice in the shape of our patches, X and Y .
When measuring mutual information in time-series data it is
intuitive to divide the system at a nominal present time t and
measure the mutual information between the output over some
past period (t − τ → t) and the future output (from t → t + τ )
[28]. By varying τ it is possible to measure not only the amount
of information the past of the system holds about the future,
but also the length of time information persists in the system.

Here we are looking at spatial data: An analogous approach
would be to divide the system in two and measure mutual
information between configurations either side of the divide.
However, this gives configuration spaces that are too large to
sample. It is possible to approximate this approach (perfectly,
under certain conditions) by measuring the mutual information
of two abutting patches and varying their length (in the
direction away from their interface) [29]. The configuration
space is smaller, but proportional to the length of the patches.
Therefore, it can still be too big when the patches are made
long enough to encompass long-range correlations. A compu-
tationally cheaper method is to measure the mutual information
between two patches that are not abutting. Correlations at
different lengths can be measured by varying the separation of
the patches rather than increasing their size.

The patch correlation length of Ref. [25] is based on the
entropy of single patches rather than the mutual information
between patches. The patches are centered on particles so each
patch represents the configuration of particles within a radius r

of a given particle. Two patches are said to belong to the same
state if these configurations are the same (some difference is
allowed for thermal vibration). The configurational entropy is
calculated by comparing all of the particles in the system and
taking the entropy of the distribution of states. This approach
has in mind systems that consist of a mosaic of ordered tiles.
The order ensures that the entropy increases subextensively
with r until patches start to encompass multiple tiles. As r

is increased beyond this the entropy becomes extensive: The
patch correlation length measures this crossover.

Alternatively one could measure the mutual information
between two separate patches in the system. If these are within
a single tile, the mutual information will be positive; if they do
not share any tiles, then the mutual information will be zero.
If there is a crossover from subextensive to extensive regimes
in the configurational entropy, then this will be represented in
the mutual information.
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The advantage of the mutual information approach is
that we have defined our patches in such a way to probe
different distances without increasing the size of the patches.
As patch size increases it becomes harder to sample the patch
distribution well: The method used in Ref. [25] can measure
a maximum entropy of log N . N is the number of particles
(hence patches) in the system so the maximum is reached when
all N patches are in unique states. In fact, the entropy should
be lower than this maximum to ensure that all possible states
have had a chance to be sampled. We reached this limit for
small patches when measuring the configurational entropy for
the binary hard disk system, whereas we were able to apply
our method for measuring the mutual information between
patches successfully. A more detailed comparison of these
methods can be found in Sec. V

There is a growing body of literature that deals with nonpe-
riodic spatial order using information theory. The starting point
for many of these methods is the analysis of the complexity of
time series using the entropy rate (the inherent randomness
per symbol once all correlations are accounted for) [30]
and the excess entropy, which measures the memory of the
process [28]. In some cases useful information about spatial
systems can be obtained just by applying these techniques to
one-dimensional time series [31]. An elaboration on this is the
statistical complexity [32] where the time series is decomposed
into causal states. The statistical complexity is given by
the Shannon entropy of the distribution of these states and
measures the size of the minimal finite-state automaton that
can emulate the source of the time-series.

However, if one wants to look at spatial correlations there
is not one unique way to transfer these techniques to two-
(or more) dimensional data. Spatial forms of the entropy
rate and excess entropy can be obtained by measuring the
entropy of expanding blocks of spatial data [29]. These have
been used to study spin glasses [33]. Alternatively, one can
measure order with a spatial statistical complexity [34] where
the causal states depend on the ability of one part of the system
to predict the configuration in another. In systems where the
interesting spatial order consists of patterns of well-defined and
interlocking regions the “configuration” entropy (the entropy
of the distribution of regional densities at a given length scale)
can be used to find the relevant length scale of the pattern [35].

A further approach is to look at the dynamics of pattern for-
mation and propagation. A local form of statistical complexity
can be used to measure how information from the past of a
given site influences the future configurations [36]. Transfer
entropy [37] measures spatial transfer of information within a
system as it evolves. In cases where a pattern is formed by a
series of placements (e.g., sequential adsorption) the informa-
tion gain complexity may be used to measure the uncertainty
in the next change to the system given its history [38].

III. METHODS

A. Simulation details

We investigate the mutual information in computer simu-
lations of two systems. The first is a binary mixture (50:50)
of small (radius σ ) and large (Rσ ) hard disk particles in two
dimensions. We look at systems with R = 1.4 and 1.2. In
both cases the system exhibits dynamic slowing down and

FIG. 1. (Color online) The kinetic constraints in the 2-TLG
model: for the central particle to move into the rightmost vacancy it
passes through the mutually neighboring sites. These must be empty
for the move to be accepted.

other glassy behavior (see Sec. IV A), but at R = 1.2 there
is much more crystalline order. We look at systems with area
fractions 0.70 � φ � 0.80. The area fraction is the fraction of
the total area of the system that is covered with particles. At
φ = 0.71 monodisperse hard disks (the disks are of identical
diameter) undergo a liquid-hexatic transition. The hexatic
phase has sixfold bond orientational symmetry but does not
have translational symmetry. At approximately φ = 0.72 there
is a hexatic-solid transition [39].

The system evolves with Monte Carlo dynamics: A trial
move involves shifting a particle to a random position
somewhere in an 0.05 × 0.05σ 2 square centered on its original
position. If the move does not lead to an overlap with any other
particle, then the move is accepted. We measure time in Monte
Carlo sweeps: One sweep involves N attempted moves, where
N is the number of particles in the system (N = 20 000).
Periodic boundary conditions are used.

The second system is the two-vacancy-assisted-hopping
triangular lattice gas (2-TLG). This is a lattice gas model of a
glass-forming fluid introduced in Ref. [11]. Hard particles sit
on a two-dimensional triangular lattice. Monte Carlo dynamics
are used to evolve the system: A random particle is chosen and
an attempt made to move it to a random neighboring site.
The move is accepted only if the neighboring site is vacant,
and if both sites that are mutual neighbors of the particle’s
starting site and the trial-move site are also vacant (see Fig. 1).
As the system is a lattice gas there is no static structure.
However, the (2)-TLG is known to slow down dramatically
(see Fig. 2) and become increasingly heterogeneous as its
density is increased [10].

B. Relaxation times

The relaxation times τα of the systems are mea-
sured using self-intermediate scattering functions. The self-
intermediate scattering function is defined as F (t,k) =
(1/N )

∑
j exp(ik|rj (t) − rj (0)|) where rj (t) is the position

of particle j at time t . This decays to zero as the particles’
positions become decorrelated with their initial positions. τα

is defined as the time at which the intermediate scattering
function has decayed to exp(−1). k is set to a spatial frequency
of 2π/σ . Once τα has been measured at various φ Vogel-
Fulcher-Tamman (VFT) fits (τα = τ0 exp[Dφ/(φ0 − φ)]) are
used to obtain φ0, the ideal glass transition packing fraction.
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FIG. 2. (Color online) Relaxation time against density for the
2-TLG.

C. Mutual information-based measurements of structure

In the binary disk system we take 1.8 × 1.8σ 2 square
patches (each patch is large enough to hold up to six small
particles). The distance between the patch centres is d as
shown in Fig. 3. We discretize the patches onto a 6 × 6 grid
and represent each configuration as a 3-ary number (0 = empty
space; 1 = small particle; 2 = large particle). We assume the
joint probability distribution of two patches separated by a
given distance (note that the displacement is always along the
axis of the square) is stationary over space. As such, we sample
the probability distribution over space and multiple instances
of the system: The positions and orientations of the sampled
pairs of patches are chosen at random.

For the TLG there is no need to discretize the patches. We
use hexagonal patches (of varying side length) and encode
them as binary numbers (as there is only one particle type).

Mutual information is calculated directly from the his-
togram of patch values. It is possible to calculate mutual
information from continuous distributions [40], but the nature
of the patches, they contain an unknown number of either type
of particle and therefore do not have a set dimensionality,
makes this difficult. These issues do not affect the dis-
cretized patches, which always consist of n2 symbols. By the
information-processing inequality [26] the mutual information
between discretized patches is a lower bound on the mutual
information between continuous patches.

d
2 2

1
2 1

1
2

1

FIG. 3. (Color online) The system for discretizing the patch
configuration in the MC hard disk system (not to scale). A grid
is superimposed on the patch, and pixels that include a particle
center are marked 1 or 2 depending on particle type. Empty space is
encoded with zero. The patches are represented by a 3-ary number.
Mutual information is measured between two patches separated by
a distance dσ .

The histogram method for estimating mutual information
has a positive systematic bias. Finite-sample corrections exist
[41,42] although we obtained better results by measuring
entropies at different sample numbers and fitting curves to
estimate errors (see the Appendix). Equation (3) is used to
calculate mutual information from the entropy measurements.
The mutual information static length (ξmi) is defined as the
first moment of the distribution of patch mutual information
with separation d:

ξmi =
∑

d dI (X; Yd )∑
d I (X; Yd )

. (5)

Usually length scales are defined using the inverse of an
exponential decay constant [for example, I (X; Yd ) ∼ e−d/ξmi ].
This is the case for the other length scales mentioned in this
paper. However, I (X,Yd ) does not decay exponentially, and
so such a method is unsuitable. In the case where the decay
is exponential then ξmi as given in Eq. (5) would equal the
inverse of the decay constant.

When d < 1.8σ some of the mutual information measured
is due to the overlap between the two patches. To avoid this
we measure the mutual information between one full-size
patch and the nonoverlapping part of the other patch. We
normalize the mutual information by its theoretical maximum
(the entropy of the larger patch) to give a value that is
comparable at all d.

D. Conventional measurements of structure

We wish to compare any static structure we might find
to the length scale of the dynamical heterogeneity in the
system. To do so, we calculate the dynamic length using
a four-point correlation function approach similar to that in
Ref. [43] To start with we calculate an overlap function for each
particle:

wi(t) =
{

1 if |ri(t) − ri(0)| > 0.3σ

0 otherwise
. (6)

We measure the dynamic heterogeneity using χ4:

χ4(t) = 1

Nρ
[〈Q(t)2〉 − 〈Q(t)〉2], (7)

where Q(t) = ∑
i wi(t). The averages are taken over many

realizations of the system. For each density we find τh: the
time which maximizes χ4(t) and which is the time over which
the system is most dynamically heterogeneous. τh is used to
calculate a structure factor:

S4(k) =
∑
ij

(wi(τh) − w̄(τh))(wj (τh) − w̄(τh)) exp(ik
rij )

(8)
(k is spatial frequency). This is circularly averaged and an
Ornstein-Zernike function is fit to the low k part of our data to
give ξ4, the dynamic correlation length:

S4(k) = S0

1 + (kξ4)2
. (9)

We also compare the mutual information lengths to other
order parameters in the binary hard disk systems: the hex-
atic order parameter �6

j = ∑
k∈n(j ) exp[i6θjk] (n(j ) are the
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FIG. 4. (Color online) Ornstein-Zernike fits and lengths of �6 for
R = 1.2 (a, c) and R = 1.4 (b, d). The lower plots show the extracted
lengths (ξ6) against φ. There is a clear increase in the length of hexatic
order for the R = 1.2 system (c) that is absent when R = 1.4 (d).

neighbors of particle j ; θjk is the angle between particles j

and k) [44]; and local s2 [16]. In both cases a length scale
is extracted by fitting a 2D Ornstein-Zernike envelope [16]
to the normalized correlation function of the order parameter
(see Fig. 4). gx(r) is the correlation function and ξx the length
scale of a particular order parameter: Here we use g6(r)
and gs2 (r) for the correlation functions of �6 and local s2,
respectively:

gx(r)

g(r)
∝ r−1/4 exp(−r/ξx). (10)

Local s2 is calculated from the individual pair correlation
functions ga

i (r) and gb
i (r) :

ga
i (r) =

〈
1

2πr
rρ(N − 1)

∑
j∈A

δ(r − 
rij )

〉
10τα

, (11)

gb
i (r) =

〈
1

2πr
rρ(N − 1)

∑
j∈B

δ(r − 
rij )

〉
10τα

. (12)

A(B) is the set of small (large) particles. N is the number,
and ρ the density of the small (large) particles in the system.

We average over 10τα to remove short-term fluctuations and
to ensure that g(r) is adequately sampled. It is reasonable to
suppose that the averaging time used will affect the final value
of s2. This is not investigated as the aim here is to replicate s2

as measured in Ref. [16]. The final particular s2 is the sum of
contributions from both correlation functions:

s2
i = −ρ

2

∑
k∈{a,b}

∫ r∗
k

o

dr
{
gk

i (r) ln gk
i (r) − [

gk
i (r) − 1

]}
. (13)

The integration of s2 should ideally be between zero and
+∞. Practically, it is cut off at a value that is large enough
to take in many shells of surrounding particles. This may be

0.70 0.74 0.78
φ

τ α
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3
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4
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5
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1:1.2

1:1.4

FIG. 5. (Color online) The relaxation time τα against area fraction
φ for the two values of R in the hard disk system. τα is measured
as the time taken by the self-intermediate scattering function to fall
to exp(−1) [45]. The lines are VFT fits: τα ∝ exp[A/(φ0 − φ)]. φ0

equals 0.82 (0.83) for the R = 1.2 (1.4) systems.

slightly different from the method implemented in Ref. [16],
but we believe our method should capture any static length
scale.

IV. RESULTS

A. Binary hard disks

As φ is increased from 0.7 the relaxation times in both
systems increase significantly (Fig. 5) with the R = 1.2
system slowing more. Both systems also become dynamically
heterogeneous. Plots of χ4 (Fig. 6) indicate that both systems
are dynamically heterogeneous over intermediate times and
that the maximum heterogeneity increases as the system
becomes more dense. Figure 7 shows the dynamical correlation
lengths calculated at the time of maximum χ4 for each φ. These
show the range of the dynamic correlations increasing with φ.
Again, this is more pronounced in the R = 1.2 system.

We begin by considering the distribution of mutual infor-
mation with patch separation distance (Fig. 8). There is little
change in the distribution with φ for the R = 1.4 system:
The mutual information increases slightly at short distances,
and there is a small but consistent increase in the mutual
information length as the density is increased. This is in
marked contrast to the R = 1.2 system (as is be expected
given its hexatic ordering). In this case the mutual information
decays much more slowly with distance at the higher density
state points. The increase in mutual information length seems
consistent with the increase in ξ6.

t
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10 105 10910
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10
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10
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FIG. 6. (Color online) χ4(t) for the binary hard disk system at
R = 1.2 and R = 1.4. The time of the maximum χ4(t = τh) is used
when calculating the dynamic correlation length, ξ4.
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FIG. 7. (Color online) The dynamic correlation length ξ4 in-
creases with area fraction for both R = 1.2 and R = 1.4. As with
the increase in relaxation time, the effect is greater for R = 1.2.
Lines are a guide to the eye.

This is apparent in Fig. 9 where the various lengths are
plotted against the reduced area fraction, φ0 − φ. The mutual
information and �6 lengths (ξmi and ξ6) increase at similar
rates in the R = 1.2 system. However, neither increases as fast
as the dynamical heterogeneity length, ξ4. The difference in
static and dynamic length scales is more pronounced in the
R = 1.4 system. Here the mutual information length barely
increases at all, whereas the dynamic length at φ = 0.8 is an
order of magnitude greater than at φ = 0.7.

It is apparent in Figs. 7, 8, and 9 that all lengths for the
R = 1.2 system at φ = 0.76 are high relative to the others
(alternatively the φ = 0.78 lengths could be considered low).
There is no reason to suppose that there is some significant
physical difference between these state points. Rather, by
this point the lengths become relatively large compared to
the system size and finite size effects [46] work to suppress
the lengths measured at φ = 0.78. This will not affect the
comparison of ξmi to ξ6.

As the hexatic order parameter varies little for the R = 1.4
system we measure the local s2 length. The correlations
in this quantity have been used to detect order in various
glass-forming liquids [16]. It measures (in its global form)
the pairwise contribution to extraconfigurational entropy of
the system compared to an ideal gas [47]. Unlike the static
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FIG. 9. (Color online) A comparison of lengths in the binary hard
disk R = 1.2 and 1.4 systems. The lines should be considered guides
to the eye (they are fits of ξ ∝ (φ0 − φ)b where φ0 is taken from the
VFT fit of τα for the system). ξ4 is the dynamical correlation length;
ξmi is the (static) mutual information length; and ξ6 and ξs2 are the
correlation lengths of �6 and local s2, respectively. Although not
obvious from the plot ξmi in the R = 1.4 system does increase very
slightly with φ.

mutual information length, ξs2 increases with system density
(although not as much as ξ4).

Essentially s2 measures the peakedness of a pair correlation
function. It is averaged, in this case, over a trajectory of
the system: So a particle that moves little and is surrounded
by similar particles will have a rather spiked g(r); particles
that move around a lot will smooth out their g(r). The
peakedness of individual g(r) that are averaged in this way
will be sensitive to dynamic heterogeneity. Since we assume
mutual information measures any true increase in structural
correlation length, it is uncertain whether increasing ξs2 is
measuring an increasing static length or is confounded by
the increasing dynamic length scale. The fact that the mutual
information length shows no such increase suggests that the
second possibility is likely.

Finally, we look at the dynamic mutual information between
patches (in the R = 1.4 system). This is calculated similarly
to the static mutual information, but we no longer encode the
particle type and instead encode the mobility of the particle.
The mobility is taken from the overlap function [Eq. (6)] used
to calculate χ4 and ξ4. The patch is constructed such that
mobile particles are encoded with one, and immobile particles
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FIG. 8. (Color online) Plots of the mutual information between patches (I (d)) against patch separation d for the binary hard disk system
with R = 1.2 and R = 1.4. The values have been corrected for overlapping patches and normalized so that at each distance the maximum
possible mutual information is one. The left and central plots are of mutual information between patches encoding static information. The
right plot shows mutual information between patches encoding dynamic information for the R = 1.4 system. The (static) mutual information
lengths (and the �6 length for R = 1.2) are plotted in the insets.
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and empty space are encoded with zero. The information the
patches contain is the position of mobile particles in the system.
Because the positions of the mobile particles are encoded in
these dynamic patches the mutual information between them
contains static as well as dynamic information. As such, it
is not straightforward to extract a meaningful length scale.
We do not attempt to do so here. However, unlike the static
mutual information, the dynamic mutual information shows
an increase at longer distances as φ is increased (Fig. 8).
A comparison of the static and dynamic mutual information
clearly shows that the dynamic correlations extend to greater
length scales than the static correlations.

B. Triangular lattice gas

The 2-TLG, being a kinetically constrained model, has no
static structure by design. As expected, no static structure
was found using patch mutual information. We calculated
the dynamic mutual information (as described above) using
patches of various radii. Here we focus on the lengths
obtained from radius one (i.e., point) patches. These contain
no extra structural information and so are directly comparable
to the dynamic correlation length ξ4. The dynamic mutual
information lengths are obtained as before [Eq. (5)]. The
mobility of particles is again measured by an overlap function:
If the particle has moved from its original position after time
t , then it is mobile.

Figure 10 shows the dynamic mutual information length,
ξdyn,mi(t), measured at different t for various system densities
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FIG. 10. (Color online) (a) The dynamic mutual information
length [ξdyn,mi(t)] for the 2-TLG at different densities and with
mobility measured over different times t ; (b) the dynamic mutual
information length at t = τα for each density [ξdyn,mi(τα), red
triangles]. The blue circles are dynamic heterogeneity length data
from Ref. [10] for the 2-TLG. For higher densities (higher τα) the
lengths scale similarly. The inset shows ξdyn,mi(τα) plotted against
density.

(ρ). It is clear that dynamical heterogeneity is an intermediate
time-scale phenomenon: Each curve peaks at a time propor-
tional to the relevant relaxation time (τα). As expected, this
maximum length increases as the system becomes more dense.
Figure 10 also shows the dynamic mutual information lengths
at τα , ξdyn,mi(τα), compared to existing four-point correlation
measurements (from Ref. [10]). The scaling of length with
relaxation time with exponent 1.4 agrees well for both sets of
measurements.

V. COMPARING ξmi TO PATCH-REPETITION
AND POINT-TO-SET LENGTHS

Two other lengths of interest when studying glass are
the point-to-set-length ξpts [48] and patch-repetition length
ξpr [25]. In this section we consider how these two lengths are
related the the mutual information length ξmi.

One method for determining ξpts is to define a cavity of
linear size r in an equilibrium configuration of the system
of interest and freeze all the particles outside the cavity. The
particles inside the cavity are allowed to evolve normally. If
r < ξpts then the configuration is locked in one state (this is
measured using an overlap function; details may be found
in [48]); if r > ξpts then the cavity can relax and is not stuck in
the original state. The patch-repetition length ξpr is measured
by measuring the entropy of patches of increasing radius, r .
This entropy, as a function of r , should increase subextensively
(at a rate less than rd where d is the dimension of the system)
up to a point (r = ξpr). After this point the entropy increases
extensively.

These two lengths should be expected to behave similarly.
If we consider a cavity with r < ξpts, then the number of states
available to the cavity is bounded by the number available
to its boundary [49] (the width of the boundary depends
on the range of interactions in the system). The number of
configurations available to the boundary will scale with rd−1

at fastest, and so the entropy of the cavity will increase
subextensively below ξpts. As ξpts increases the transition
to extensive entropy will occur at larger r , and so ξpr will
increase also.

To consider ξmi we imagine one patch positioned in the
center of the cavity (X) and the other (Y ) at the boundary at a
distance r . If r < ξpts then by fixing the boundary we fix the
configuration of the central patch. The boundary includes Y

so by fixing Y we reduce the number of possible boundary
configurations and thus reduce the possible configurations
of X. In this situation there is mutual information between
X and Y as H (X|Y ) < H (Y ). As r is increased beyond
ξpts eventually X will not be determined by the boundary.
The influence of Y on X will wane. So the decay of
mutual information between the patches with r will depend
on ξpts.

This is conditional on the setting of Y restricting the
boundary sufficiently that the entropy of X is affected. There
are two issues here: There may be many possible boundaries
for a given Y , and there may be multiple whole configurations
of the cavity for a given configuration of X. Whether this is a
problem or not depends on the particular nature of the system
and the size of the patches. If this is not an issue, we expect
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that all three lengths will behave similarly as amorphous order
grows in the system.

VI. DISCUSSION AND CONCLUSIONS

In this paper we developed a measure of order based on
mutual information between patches of a system’s configura-
tion. The length scale extracted from such measurements, the
mutual information length ξmi should under certain conditions
grow with other relevant glass lengths such as the point-
to-set length. In general ξmi will be sensitive to arbitrary
crystalline and amorphous order. In the R = 1.2 hard disk
system investigated we had direct access to a relevant order
parameter, and the length derived from this was in agreement
with ξmi.

We also used mutual information to examine dynamic
correlations in the hard disk and TLG systems. The dynamic
patches contained configurational information which made
them unsuitable for measuring purely dynamical correlation
lengths in a way comparable to the four-point-correlation
function [43]. However, the dynamic mutual information mea-
surements were useful as a means to illustrate the difference
in the growth of static and dynamic correlations at different
distances. In the case where the dynamic patches do not
contain configurational information (as for the 2-TLG where
point-sized patches were used; Sec. IV B) we recover the
behavior of the dynamic correlation function.

The mutual information length changes little with φ for
the R = 1.4 hard disk system despite the vast increase in
relaxation time and dynamical length over the same range.
Also, the two static lengths measured in the R = 1.2 system
increased markedly slower than the dynamic correlation length
as the system was compressed. These results support the
conclusion that there need not be a growing static length
coupled with the dynamics of glassy systems, agreeing with
previous work such as Refs. [15,21,23]. The lack of a growing
ξmi rules out the presence of medium-range geometrical order
in the R = 1.4 system. Therefore the behavior of this system
is not explained by theories based on geometrical frustration
such as Refs. [6,16].

It should be noted that in the R = 1.4 system the mutual
information length casts some doubt on the interpretation of
ξs2 , the local s2 length, and that ξs2 does not increase as quickly
as ξ4, the dynamic length, as we increase φ. However, we were
not able to measure s2 exactly as specified in Ref. [16], and
this may have influenced our results.

We intend to compare ξmi and the point-to-set length
more thoroughly in future work. The measurements required
to check whether ξmi is definitely sensitive to the point-
to-set length are not trivial. So, our results here do not
rule out an increasing point-to-set length and are consistent
with Random First Order Theory [7] as an explanation of
this hard disk system. Our results are also compatible with
dynamical facilitation [8] or a dynamical phase-transition [50]
explanation of the glass transition as they do not invoke static
order.

Finally, the hard disk system investigated here has purely
repulsive interactions. There is reason to suppose that lo-
cal structure is more important in systems with attractive
potentials [51], and so the mutual information between

patches might be expected to behave differently in such
systems.
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APPENDIX: COMPENSATING FOR FINITE
SAMPLE ERRORS

To compute the mutual information [Eq. (4)] we start by
estimating each probability distribution with the frequency
distribution obtained by sampling. As we have only a finite
number of samples we may not encounter some low probability
patch configurations, and therefore our estimate of the support
of the probability distribution will be too small. Also, the
frequencies we measure will fluctuate from their true values
which will have the effect of making the estimated distribution
less uniform than the true distribution. Both of these effects
cause a systematic underestimation in entropy. The effect
increases with the size of the probability space (holding the
number of samples constant), and so when estimating mutual
information using Eq. (3) it is the negative H (X,Y ) term that
dominates the error. As such, the mutual information will have
a positive systematic bias. Figure 11 shows this effect: There is
positive mutual information at long distances when we would
expect none. This effect reduces as the sample size is increased.

To estimate the true entropy, limn→∞ H (X,Yd ) for two
patches separated by a distance d (where n is proportional to
the number of samples) we measure the entropy at various
sample sizes: Hn(X,Yd ). We assume that the difference
between the true and finite sample entropies is given by a series
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H∞(X,Yd ). The inset shows the first-order error fits that were used to
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FIG. 12. (Color online) The exponent in the error terms versus
the estimated true entropy. The different coloured points represent
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R = 1.4 systems.

of terms [41]:

Hn = H∞ + k1

(
1

nb

)
+ k2

(
1

nb

)2

+ · · · . (A1)

By fitting our data to this form we can estimate H∞.
Figure 11 shows such a fit using only the first order error

term (this technique was used for the R = 1.4 systems). In this
case b = 0.5 gives a good fit for all non-overlapping patches.
The exact value of b varies between the systems and decreases
as H increases (Fig. 12).

By ignoring higher order terms we overestimate the error
and get (unphysical) negative mutual information values. To
compensate for this we shift the curve so that the baseline is
zero before measuring the mutual information length. Adding
the second order term decreases this error, although it makes
no significant difference to the mutual information length.
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