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Abstract
Impurities in crystalline materials introduce disorder into an otherwise ordered structure due to
the formation of lattice defects and grain boundaries. The properties of the resulting
polycrystal can differ remarkably from those of the ideal single crystal. Here we investigate a
quasi-two-dimensional system of colloidal spheres containing a small fraction of aspherical
impurities and characterise the resulting polycrystalline monolayer. We find that, in the
vicinity of an impurity, the underlying hexagonal lattice is deformed due to a preference for
five-fold co-ordinated particles adjacent to impurities. This results in a reduction in local
hexagonal ordering around an impurity. Increasing the concentration of impurities leads to an
increase in the number of these defects and consequently a reduction in system-wide
hexagonal ordering and a corresponding increase in entropy as measured from the distribution
of Voronoi cell areas. Furthermore, through both considering orientational correlations and
directly identifying crystalline domains we observe a decrease in the average polycrystalline
grain size on increasing the concentration of impurities. Our data show that, for the
concentrations considered, local structural modifications due to the presence of impurities are
independent of their concentration, while structure on longer lengthscales (i.e. the size of
polycrystalline grains) is determined by the impurity concentration.

Keywords: colloids, polycrystals, crystals, microscopy, impurities, two dimensions

(Some figures may appear in colour only in the online journal)

1. Introduction

In theory, the constituent particles of a crystalline material
are perfectly ordered on a periodic lattice and thus exhibit
long-ranged translational and orientational order. In two
dimensions, the crystalline structure adopted by a system
of identical circular particles interacting isotropically in the
absence of external fields is invariably hexagonal. However,
at finite temperature, long wavelength fluctuations that would
have divergent energy cost in three dimensions are stable in 2d,
reducing translational order [1–4]. The result is that, except
in the close packed limit, two-dimensional systems exhibit

only quasi-long-ranged translational order characterised by
algebraically decaying translational correlation functions. In
spite of this, orientational ordering remains long-ranged in
the two-dimensional hexagonal crystal [4–6]. Intermediate
between the hexagonal crystal and the isotropic fluid is
the hexatic phase characterised by exponentially decaying
translational correlations (short ranged translational ordering)
and algebraically decaying orientational correlations (quasi-
long-ranged orientational ordering) [4–7].

It is often useful to consider ideal single crystals consisting
of an infinite array of particles located on a lattice. The
experimental reality, however, is rarely so perfect. Real
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crystalline materials commonly feature grain boundaries and
other defects which reduce their long-ranged order and modify
their properties compared to a single crystal. For example, the
yield stress of a polycrystalline material depends upon the size
of crystalline grains. In the micrometre size regime, smaller
grains result in a stronger material [8, 9] while nanocrystals
show the opposite behaviour: softening on decreasing grain
size [9–11]. The crossover between these behaviours is
material dependent but is typically located at a lengthscale
in the tens of nanometres. Similarly, the optical properties of
crystalline materials are also dependent on the distribution of
defects due to, for example, scattering from grain boundaries
[12] or pores [13]. Defects and grain boundaries may arise

from the presence of impurities in a crystal [14–16] and thus
controlling the concentration and morphology of impurities
allows the tuning of material properties.

Here we investigate a quasi-two-dimensional colloidal
crystal in the presence of aspherical impurities and demonstrate
their effect on the structural properties of the system. Colloids
are an attractive model system for the study of many
general phenomena due to their experimentally accessible
time and length scales allowing real-space observation and
the extraction of particle-level information. Two-dimensional
colloidal crystals are of interest for a range of applications from
templating the growth of three-dimensional crystals (colloidal
epitaxy) [17, 18], through designing phononic [19] and
photonic [18, 20] bandgap materials, to surface coatings [21],
adhesives and lubrication technologies as well as offering
fundamental insight into the behaviour of atomic and molecular
materials [22].

Previous investigation has focused on the effect of
impurities that are either much larger [14, 15, 23] or much
smaller [24] than their host colloids on crystallisation in three
dimensions. These studies demonstrate that the texture of a
colloidal polycrystal can be controlled through suitable choice
of impurity size and concentration.

Here we focus on the intermediate regime where colloid
and impurity are of similar size and disorder results from the
aspherical shape of the impurity particles. In section 2 we
describe the experimental colloidal system. Section 3 presents
our investigations of polycrystal structure. Firstly impurities
are characterised and compared to non-impurity particles in
section 3.1. Subsequently, structural modifications in the
vicinity of a single impurity are considered in section 3.2
and the dependence of global structure upon impurity
concentration is investigated in section 3.3. Section 3.4
is concerned with the identification and characterisation of
individual crystalline grains and section 3.5 presents entropy
measurements based on the distribution of Voronoi cell areas in
polycrystalline samples compared to that of the perfect single
crystal. Finally the various lengthscales extracted from our
analyses are compared and their dependence on the impurity
concentration is discussed in section 4 and conclusions are
drawn in section 5.

2. Methods

The experimental colloidal sample consists of silica spheres
of diameter σ = 3.1 µm and polydispersity s = 0.025

obtained from Bangs Laboratory suspended in deionised water.
Previous work has shown that the addition of salt to an aqueous
suspension of silica colloids has little effect on the interparticle
potential, and thus we neglect electrostatic interactions [25].
The gravitational length of this system is lg/σ = 0.005
resulting in fast sedimentation of the particles and, at sufficient
dilution, the formation of a quasi-two-dimensional monolayer
adjacent to the glass wall of the microscopy cell. Once this
layer is formed, out of plane motion is negligible and therefore
we consider our experimental particles as a good model for
hard discs. Quasi-two-dimensional colloidal samples such
as this are a common model system for the investigation
of two-dimensional phenomena and have previously been
employed in e.g. revealing the nature of two-dimensional
phase transitions [26, 27], confirming theoretical predictions
of hard disc structure in binary mixtures [28] and measuring
the equation of state of the hard disc fluid [29].

The sample cell is constructed using glass microscope
slides and coverslips held together with epoxy glue and has
approximate dimensions 200 µm×1 cm×1 cm. To prevent the
adhesion of particles to the glass substrate against which they
sediment, slides are treated with Gelest Glassclad 18 rendering
them hydrophobic [30]. The particle stock is diluted such
that the resulting monolayer is of sufficient density for the
formation of an hexagonal crystal. Experimental samples are
prepared at area fraction φ = 0.85±0.02 where the uncertainty
arises from small variations in the number of particles in
the field of view and the inherent challenges in determining
absolute packing fractions in colloidal experiments [31].
Typically, the field of view containsN ≈ 2500 particles. These
area fractions are far in excess of φ = 0.72, the area fraction
above which monodisperse hard discs exist as a hexagonal
crystal [6], and are below the area fraction of the close packed
hexagonal crystal, φ = π/

√
12 ≈ 0.907.

It is observed that a small number of the silica particles are
misshapen (see figures 1(a) and detail in (b)) and thus serve
as impurities, distorting the crystal structure in their vicinity.
It is likely that these aspherical particles are fused dimers
of the majority spherical colloids formed during the particle
synthesis. A typical sample contains <5% impurity particles.
After at least one hour of equilibration time, experimental
samples are observed via brightfield microscopy for 5 min. All
data are acquired within two hours of sample preparation. On
these timescales no ageing or coarsening of the polycrystal
structure is observed. Particle trajectories are subsequently
extracted using particle tracking routines adapted from those
of Crocker and Grier [32]. Impurities are identified by
considering the eccentricity of the particle images defined for
a single particle as:

e =
[(∑

i mi cos 2θi

)2
+

(∑
i mi sin 2θi

)2
]1/2

∑
i mi

(1)

where i labels individual pixels in the acquired micrographs,
mi is the brightness of pixel i and the summations run over all
pixels within a circular region of radius 0.65σ of an identified
particle centre. The angle θi is the angle between the vector
joining pixel i to the particle centre and an arbitrary reference
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(a) (b)

(c) (d)

Figure 1. (a) Sample micrograph of polycrystalline monolayer of silica spheres. Scale bar represents 20 µm. (b) Enlarged section from (a)
showing aspherical impurity particles. (c) Voronoi decomposition of the structure shown in (a). Cells are coloured according to
co-ordination number (yellow: z = 6, red: z = 5, blue: z = 7) except for cells corresponding to impurities (dark grey). (d) Same Voronoi
tesselation as in (c) now with six-fold co-ordinated cells coloured according to the local ψ6 phase angle (also indicated by black arrows).
Impurities remain dark grey while defects (five-fold and seven-fold co-ordinated cells) are light grey.

axis, taken here as the positive x axis. Perfectly spherical
particles have eccentricity e = 0 while misshapen particles
have a larger eccentricity. We apply a cut-off at e = 0.3 and
consider any objects of greater eccentricity to be impurities.
We offer further characterisation of the observed impurities in
section 3.1. The concentration of impurities is quantified using
the impurity number density, ρi, from which the lengthscale
ρ

−1/2
i is defined. This is the mean distance between impurities

and is employed as a characteristic lengthscale for the system.
In addition to colloidal experiments we perform hard disc
Monte Carlo simulation of a single crystal at area fraction φ =
0.85 in order to compare experimentally observed structures
to that of the equivalent impurity-free system.

3. Results

At the area fractions investigated, the equilibrium structure
of monodisperse hard discs in the bulk and in the absence
of impurities is crystalline [6, 33], which holds even
for quasi-two-dimensional colloids [34]. Instead of a
single hexagonal crystal, what is observed in experiment is
a polycrystalline system consisting of hexagonal domains
separated by disordered grain boundaries, as shown in
figure 1(a). Impurities tend to deform the hexagonal lattice
in their vicinity (figures 1(a) and (b)) and are often observed

at grain boundaries. We identify defects in the crystalline
lattice through the local co-ordination number, z, found via
a Voronoi decomposition of the system such as is shown in
figure 1(c). Here yellow cells represent six-fold co-ordinated
particles while red and blue cells are five-fold and seven-fold
co-ordinated respectively and are considered to be defects.
Cells corresponding to impurities are grey. It is clear from
the example Voronoi tesselation shown in figure 1(c) that
neighbours of impurities are often defects. This shall be
elaborated upon and quantified shortly.

Local hexagonal structure within the sample is quantified
using the complex bond-orientational order parameter, ψ

j

6 ,
defined for particle j as ψ

j

6 = 1
zj

∑zj

m=1 exp (i6θ
j
m) where

zj is the co-ordination number of particle j , m labels its
neighbours and θ

j
m is the angle made between a reference axis

and the bond joining particles j and m. After summing the
contributions from all neighbours of particle j , the resulting
complex number can be written as ψ

j

6 = |ψj

6 |eiθ . The
magnitude, |ψj

6 |, quantifies the degree of hexagonal ordering
about particle j with perfect hexagonal ordering resulting in
|ψj

6 | = 1. Spatial and temporal averaging of these magnitudes
yields ψ6 = 〈|ψj

6 |〉, characterising the hexagonal nature of
the entire system. The phase angle, θ , of the complex ψ

j

6
represents the direction of the local alignment of the hexagonal
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(a) (b) (c)

Figure 2. (a) Particle image eccentricity distributions for impurities (solid line) and non-impurity particles (dashed line). Inset shows the
eccentricity distribution for all particles, making no distinction between impurities and non-impurities. (b) Particle image radius of gyration
distributions for impurities (solid line) and non-impurity particles (dashed line). (c) Co-ordination number distribution for impurities (square
points and solid line) and non-impurity particles (circular points and dashed line).

lattice at the location of particle j . This local alignment for
the sample shown in figure 1(a) is illustrated in the Voronoi
diagram in (d), where both the colour of a cell and the arrow
drawn at its centre indicate the phase angle of local ψ

j

6 and
thus the local orientational direction. This rendering clearly
shows the polycrystalline nature of the sample, with two
domains of distinct hexagonal orientation separated by a string
of impurities and defects forming a grain boundary.

3.1. Characterising impurities

Before discussing the effect of the presence of aspherical
impurities on the local and global structure of the
polycrystalline system it is useful to consider their size, shape
and co-ordination numbers. Impurities are distinguished from
the majority spherical particles by the eccentricity in their
particle image, with particles having e > 0.3 identified as
impurities. The distribution of eccentricities for all particles
(impurities and non-impurities) is shown in the inset to
figure 2(a). Only a very small number of particles have an
eccentricity above the threshold. The eccentricity distributions
for impurities and non-impurity particles are plotted separately
in the main panel. This shows that the eccentricity of
impurities, characterising deviation from a circular shape,
varies between e = 0.3 and e ≈ 0.6 and thus all impurities are
not identical in shape while the eccentricity of non-impurity
particles is peaked at e ≈ 0.1.

Figure 2(b) shows the distributions of particle image
radius of gyration for impurities (solid line) and non-impurity
particles (dashed line). Note that the dashed line does not
peak at σ/2 due to the fact that the particle image is composed
of a bright spot surrounded by a dark halo. This measure
characterises only the size of the central bright spot and is
thus smaller than the true particle radius. The non-impurity
distribution is sharply peaked suggesting uniformity in the
size of non-impurity particles. This contrasts with the radius
of gyration of impurity particle images which is much more
broadly distributed, showing a wide variation in the size of
impurity particles. This variation contributes to the uncertainty
in the overall area fraction. The image of a particle alone
is not always a good indicator of its true size, especially

Figure 3. Distributions of particle image radius of gyration, rg, as a
function of co-ordination number, z, for all particle images
(impurities and non-impurities). Each ribbon refers to particles
having a distinct z between z = 4 and z = 8.

when the particle is irregularly shaped [31], and as such
estimating the area occupied by a given impurity is challenging.
Related to this is the issue of quantifying the polydispersity
of a population of irregularly shaped objects, which is
also conceptually difficult [35, 36]. The polydispersity
in a quantity x is given by sx =

√
〈x2〉 − 〈x〉2/〈x〉 and

we independently compute the polydispersities in impurity
image eccentricity and radius of gyration to be se =√

〈e2〉 − 〈e〉2/〈e〉 = 0.20 and srg =
√

〈r2
g 〉 − 〈rg〉2/〈rg〉 =

0.23. These values suggest that while there is variation in the
size and shape of impurities, it is not excessive and as such we
proceed in our investigation characterising each sample using
only the time-averaged impurity concentration.

Figure 2(c) shows the distribution of co-ordination number
for impurities (square points and solid line) and non-impurity
particles (circular points and dashed line). While non-impurity
particles tend to have six neighbours as expected in the
hexagonal crystal, impurities have a strong tendency towards
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(a) (b) (c)

Figure 4. The variation of (a) ψ6 and (b) co-ordination number as a function of distance from an impurity for a single experimental sample
with an overall impurity concentration ρi = 0.035 σ−2. Solid line is experimental data, dashed lines are empirical fits to the peaks. Insets
show the same quantities as a function of distance from a non-impurity particle. (c) Fit parameters λ and x0, defined in equation (2), as a
function of impurity fraction as extracted from ψ6 (blue) and z (red). λ is interpreted as a lengthscale for structural recovery.

over co-ordination, that is, having 7 or even 8 neighbours. This
is likely due to the slightly increased size of impurities over
non-impurity particles and has implications for the manner in
which local structure is modified in the vicinity of an impurity.
This is further explored in section 3.2.

In order to further explore the relationship between co-
ordination number and particle size, figure 3 shows particle
image radius of gyration distributions independently for
particles having 4–8 neighbours. Here no distinction is
made between impurities and the majority, spherical particles.
Considering initially particles with six or fewer neighbours, a
strong peak is observed at rg ≈ 0.4σ , the same location as
the peak in figure 2(b) for non-impurity particles. Thus it is
generally the majority spherical particles that are six-fold and
under co-ordinated. These distributions for over co-ordinated
particles, however, show a broadening of the majority particle
peak, indicating a tendency for particles with 7 or 8 neighbours
to be larger than average—i.e. impurities. This finding echoes
that presented in figure 2(c). The noise in the curves for z = 4
and z = 8 are due to poor statistics resulting from the rarity
of these co-ordination numbers. This relationship between
particle size and co-ordination number is key to understanding
the modifications to local structure in the vicinity of aspherical
impurities.

3.2. Local structural recovery

Firstly, we investigate structure as a function of distance from
an impurity particle, essentially treating each impurity as if it
were alone in the sample. Figure 4 shows the variation of ψ6

(a) and co-ordination number (b) as a function of distance from
an impurity for a single experiment at impurity concentration
ρi = 0.035 σ−2. Both quantities are temporally and spatially
averaged and ψ6(r) is normalised by the average ψ6 such that
it tends towards 1 at large r . This approximation ignores any
collective effect that multiple impurities may have on nearby
particles. However, at distances less than the average distance
between impurities, r < ρ

−1/2
i , this approach is expected

to be reasonable. As a comparison the insets in figure 4
show the variation in the same quantities with distance from
a non-impurity particle. Both ψ6 and z are suppressed in the

vicinity of an impurity and rise towards the average value after
some distance. The suppression of the peaks in these plots is
not seen in the data shown in the insets, suggesting that this
effect is a direct consequence of the presence of an impurity.
The implication is that, in the vicinity of an impurity, local
hexagonal ordering is suppressed and average co-ordination
number is reduced, indicative of defects in the hexagonal
lattice. This is also evident in the Voronoi tesselation shown
in figure 1(c). That these defects in the vicinity of impurities
tend to be under co-ordinated (five neighbours) rather than over
co-ordinated (seven neighbours) is explored below.

In order to extract a lengthscale characterising structural
recovery on moving away from an impurity, the peaks of the
data in figures 4(a) and (b) are fit with a plateau function of
the form

y = A

[
1 − exp

(
− (x − x0)

λ

)]
(2)

where A, x0 and λ are fit parameters. These fits are shown
as dashed black lines in figures 4(a) and (b). The parameters
λ and x0 are shown as a function of impurity concentration
in figure 4(c) for ψ6 (blue) and z (red). Neither λ nor x0

show any dependence on the impurity concentration in the
range considered. Furthermore, λ can be interpreted as a
typical lengthscale for structural recovery on moving away
from an impurity and is consistently of the order of 1 particle
diameter, a lengthscale smaller than the average distance
between impurities, ρ

−1/2
i .

That figure 4(b) shows a reduction in the average co-
ordination number on approaching an impurity suggests a
preference for five-fold over seven-fold co-ordinated defects
directly adjacent to an impurity. Figure 5 plots the local
average defect fractions, N5/N and N7/N , as a function of
distance from an impurity for the same experiment previously
considered in figures 4(a) and (b) and indeed supports this
interpretation. For the experimental data shown, a particle that
neighbours an impurity is five-fold co-ordinated ∼23% of the
time, while further from the impurity the average background
level of N5/N ≈ 0.09 is recovered. Seven-fold co-ordination
is slightly suppressed directly adjacent to an impurity before
showing a small enhancement in the second nearest neighbour

5
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Figure 5. Average fraction of five-fold (red) and seven-fold (blue)
co-ordinated particles as a function of distance from an impurity in a
single experiment at impurity concentration ρi = 0.035σ−2. Inset
shows average fraction of six-fold co-ordinated particles as a
function of distance from an impurity.

layer and subsequently returning to the background average
level. The inset to figure 5 shows the local average fraction of
six-fold co-ordinated particles as a function of distance from
an impurity. As previously suggested by figure 4(b), six-fold
ordering is suppressed in the vicinity of the impurity where the
hexagonal structure is distorted. Qualitatively, this behaviour
is observed in all experimental samples.

The excess of five-fold defects adjacent to an impurity
is understandable when one appreciates that, due to their
eccentric shape, impurities are often themselves seven-, eight-
or even nine-fold co-ordinated. In hexagonally ordered
systems, five-fold and seven-fold defects tend to appear in pairs
(topologically, the pair is a dislocation) and as such, over co-
ordinated (z > 6) and under co-ordinated (z < 6) particles
have a tendency to cluster, or, in the case of grain boundaries,
form strings [4]. Since impurities are misshapen and tend to
be over co-ordinated, it is expected that their neighbours are
likely to be under co-ordinated. Furthermore, this observation
also explains the small enhancement in the fraction of seven-
fold defects around r = 2σ from an impurity, as the under
co-ordinated particles adjacent to the impurity subsequently
increase the likelihood of over co-ordination in the second
nearest neighbour shell. Such chaining of defects to form grain
boundaries is evident in the Voronoi decomposition shown in
figure 1(c).

3.3. Global structural ordering

Having described the effect of impurities in isolation we
now consider the consequences of varying the impurity
concentration on the structure of the colloidal monolayer. First
we calculate the radial distribution function, g(r), defined as

g(r) = ρ−1〈
∑
i �=j

δ(ri − rj − r)〉 (3)

where ρ is the particle number density and the indices run
over all particles. This function is related to the probability

ρi = 0

ρi = 0.02 σ-2

ρi = 0.03 σ-2

ρi = 0.038 σ-2

Figure 6. Radial distribution functions, g(r), for experimental
samples with impurity concentration ρi = 0.02σ−2 (blue),
ρi = 0.03σ−2 (green) and ρi = 0.038σ−2. Black line is g(r) from
Monte Carlo simulation of a single crystal at φ = 0.85. Data offset
vertically for clarity.

of finding a particle located a distance r from an arbitrary
reference particle.

Figure 6 shows g(r) for three experimental samples of
differing impurity concentration (blue, green and red lines)
as well as data from Monte Carlo simulation of a single
hexagonal crystal at the experimental volume fraction φ =
0.85 (black line). The sharpness of the first peak in the
experimentally measured g(r) is indicative of hard-disc-like
interparticle interactions while the splitting of subsequent
peaks is characteristic of the organisation of particles on
an hexagonal lattice. While these peaks are well defined
even at large distances in the simulated single crystal,
in the polycrystalline experimental samples they become
increasingly poorly defined beyond r ≈ 5σ . This indicates a
loss of positional correlations on such lengthscales compared
to the single crystal. The experimental curves are very similar
to one another, with the exception of a slight sharpening of the
peaks at the lowest impurity fraction pictured (blue). This is
true of all experimental samples.

Greater distinction between polycrystalline structures at
differing impurity concentration is obtained by considering
the defect populations. Figure 7(a) shows the variation of
the fraction five-fold (red) and seven-fold (blue) co-ordinated
particles with impurity fraction. An increase in the number of
impurities leads to a similar increase in both five- and seven-
fold defects and a corresponding reduction in the fraction
of particles having six neighbours (inset). In all samples
there is an excess of five-fold defects over their seven-fold
counterparts, which is attributed to the preference for under
co-ordination directly adjacent to an impurity.

In addition to increasing the incidence of defects in
the hexagonal lattice, an increase in impurity concentration
reduces the average ψ6 of a sample, as shown in figure 7(b).
These two observations are related to one another, as ψ6

calculated for a defect particle is likely to be reduced compared
to that of a six-fold co-ordinated particle in the hexagonal
lattice. Hence, introducing impurities creates defects in the

6
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(a) (b)

Figure 7. (a) Overall time-averaged fractions of five-fold (red) and seven-fold (blue) co-ordinated particles as a function of impurity
concentration. Inset shows average fraction of six-fold co-ordinated particles. (b) The effect of impurity fraction on average ψ6. Open
diamond at ρi = 0 is average ψ6 measured in Monte Carlo simulation of a single hexagonal crystal. Dashed line serves to guide the eye.

(a) (b)Simulation

ρi = 0.02 σ -2

ρ
i = 0.03 σ -2ρ

i  = 0.038 σ -2

Figure 8. (a) Orientational correlation functions, g6(r), for experimental samples with impurity concentration ρi = 0.02σ−2 (blue),
ρi = 0.03σ−2 (green) and ρi = 0.038σ−2. Dashed lines are exponential fits to the peaks. Black points and line represent g6(r) measured in
Monte Carlo simulation of a single hexagonal crystal. (b) Orientational correlation length from exponential fits to g6 as a function of
impurity fraction. Blue, green and red points correspond to the blue, green and red data plotted in (a). Dashed line is inverse square root fit.
Inset shows ξ6 as a function of the mean distance between impurities.

lattice, the presence of which reduces the average value of ψ6.
This is evident when ψ6 measured in polycrystalline samples
is compared to that of the simulated single crystal at the same
area fraction (open diamond in figure 7(b)). The simulation is
free from defects and thus exhibits very high ψ6.

3.4. Grain size

The question now arises as to whether the average size of a
crystalline grain in our polycrystalline monolayers depends
on the fraction of impurities. This question is approached in
two ways: through orientational correlations in local structure
and by directly identifying and subsequently characterising the
polycrystalline grains.

When moving across a grain boundary, a change in the
orientation of the hexagonal lattice is typically seen, as shown
in figure 1(d) where the Voronoi cells are coloured based on the
local phase angle of ψ6. The orientational correlation function,
g6(r) = |〈ψj

6 ψk
6 〉| where particles j and k are separated by a

distance r , characterises spatial correlations in this alignment

and is typically used to classify the range of orientational
ordering. Fluids exhibit only short-ranged orientational order
and thus exponential decay of g6(r), while in the hexatic phase
g6(r) decays algebraically with distance indicating quasi-long-
ranged ordering. A single hexagonal crystal results in a non-
decaying g6(r) [4, 37].

Figure 8(a) shows three representative orientational
correlation functions calculated using experimental data and
g6(r) measured in Monte Carlo simulation of a single
hexagonal crystal at φ = 0.85 (black points). In the
single crystal this function is non-decaying, indicating long
ranged orientational ordering. For our polycrystalline samples
at comparable area fraction, however, the envelope of the
orientational correlation function is always best fit with an
exponential decay (dashed lines in figure 8(a)), as previously
reported for quasi-two-dimensional polycrystalline colloidal
systems [38]. These fits are of the form g6(r) ∼ exp(−r/ξ6)

where ξ6 is the correlation length characterising a typical
distance over which orientational order decorrelates. This is
our first measure of polycrystalline grain size. This correlation

7
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(a) (b)

Figure 9. (a) Voronoi tessellation of polycrystalline sample with six-fold co-ordinated cells coloured according to the local orientation of
ψ6. Impurities are shown in dark grey and defects in light grey. (b) Voronoi tessellation of the same sample, now with cells coloured
according to their identified polycrystalline grain. Contiguous cells of the same colour belong to the same grain. Grey cells represent
particles that do not meet the criteria for inclusion in a grain.

length is plotted as a function of impurity fraction in figure 8(b).
A downwards trend in ξ6 on increasing ρi is evident suggesting
that orientational correlations decay over a shorter range
when more impurities are present indicating smaller grains.
The scatter in these data is attributed to a combination of
factors including small variations in area fraction between
experiments and the fact that many larger grains extend beyond
the finite field of view of the microscope. At low impurity
concentration it is expected that ξ6 will increase steeply as
the polycrystal becomes increasingly monocrystalline and the
orientational correlation function qualitatively changes from
exponentially decaying to non-decaying. This is reflected in
the dashed line in figure 8(b), which varies as ρ

−1/2
i , relying

on the assumption that the orientational correlation length is
linearly related to the mean distance between impurities. The
inset explicitly shows ξ6 plotted against ρ

−1/2
i and indeed,

with the exception of a small number of outlying points,
reveals an approximately linear relationship between these two
lengthscales.

The second approach to characterising grain size requires
direct identification of contiguous crystalline regions within
our polycrystalline sample. Particles are identified as part of
a grain if they satisfy three criteria based on those proposed
by Dillmann et al [38, 39]. Firstly, to be considered part of
a crystalline grain particle j must have |ψj

6 | > 0.9 and be
six-fold co-ordinated. This removes all defects and impurities
from consideration and restricts the analysis to particles in
strongly hexagonal local environments. The final criterion is
that a particle is considered to be in the same grain as one of
its neighbouring particles if the difference in the arguments
of their local ψ6 (the phase angle) is smaller than some cut-
off. In this way, contiguous regions of particles having similar
local orientational alignment are identified as single grains.
The phase angle cut-off is chosen by increasing the threshold
angle from 0◦ until large grains are identified as single objects
(see figure 9). The chosen cut-off is 8.6◦. It should be noted
that while variations in the phase angle between neighbouring

particles within a grain must be below this threshold, the local
orientation within a grain may vary over long distances, as is
expected in two-dimensional crystals [2, 3].

Figure 9(a) shows a Voronoi decomposition of an
experimental sample in which the six-fold co-ordinated cells
are coloured based on the local ψ6 phase angle. Regions
of similar colour have similar local orientation. Defects
are coloured light grey and impurities are dark grey. It is
expected that contiguous regions of similar orientation should
be identified as belonging to the same grain. Figure 9(b) shows
the same Voronoi tesselation with the polygons coloured based
on the crystalline grain to which they belong. Contiguous
regions of a single colour represent a single identified grain.
Grey cells indicate particles that do not meet the criteria for
crystallinity. Identified grains can contain between 2 and many
hundreds of particles and small grains tend to be observed at
the boundaries between large grains. It is expected that, given
sufficient time, the polycrystalline structure may coarsen,
resulting in the disappearance of these smaller grains [40].
However, this is not observed on the experimental timescale
of five minutes.

Figure 10 shows the number of particles in a grain, Ng,
averaged both over time and over all identified grains as a
function of the impurity concentration. Since small ‘grains’
consisting of very few particles far outnumber the larger grains,
as is clearly visible in figure 9(b), this average is much smaller
than the size of the largest identified grains, which often contain
many hundreds of particles. Additionally, due to the finite field
of view it is expected that the true size of the largest observed
grains is underestimated as these grains are likely to extend
beyond the edges of the acquired images, reducing the average
measured grain size compared to its true value. However,
the downward trend is clear, with a greater concentration
of impurities clearly resulting in smaller grains within our
colloidal polycrystals.

The full probability distribution of grain sizes is shown in
figure 10(b) for the three experiments previously considered
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(b)(a)

Figure 10. (a) Average grain size, N
avg
g , as a function of impurity concentration. Coloured points correspond to samples previously

considered in figures 6 and 8. Dashed line indicates the downwards trend. (b) Probability distribution of measured grain sizes for these three
experimental samples with impurity concentrations ρi = 0.020 (blue), ρi = 0.030 (green) and ρi = 0.038 (red).

in figures 6 and 8(a). It is often reported that the distribution
of grain areas or volumes in polycrystalline systems has a log-
normal form [40, 41], however this is clearly not the case when
using the above criteria and grains as small as Ng = 2 can be
identified. Instead, these distributions are more reminiscent
of the crystalline cluster size distributions reported by Wang
et al [42] in which clusters are also identified at the single
particle level. The smallest grains are always most frequently
observed and for Ng < 7 the three distributions shown in
figure 10(b) are coincident. Beyond Ng ≈ 30, these size
distributions are dominated a small number of large grains.
Such behaviour is also reported by Wang et al at large cluster
sizes. What is pertinent to the current discussion is that
the size of these largest grains depends upon the impurity
concentration, with the lowest impurity concentration, ρi =
0.02 (blue data), exhibiting the largest grains, and increasing
impurity concentration leading to peaks at lower Ng. This is
reflected in the average grain sizes shown in figure 10(a). At
large grain sizes, the distributions suggested by the data appear
to have power law form with unusually broad tails, as shown by
the solid lines in figure 10(b). However, one must be cautious
in interpreting these data as here again the finite field of view
in our experiments limits the maximum observable grain size,
and results in a measured grain size that is on average less
than the true grain size for all but the smallest grains. Due to
this effect and the short experimental duration, little comment
can be made on the form of the true, underlying grain size
distribution for Ng > 30 which is likely modified from the
power law function at large lengthscales. What can be said,
however, is that the largest observed grains tend to be larger
in samples containing a lower concentration of impurities and
that there is a downwards trend in the average grain size with ρi .

3.5. Entropy

Finally we characterise the entropy of the polycrystalline
system compared to that of the perfect crystal at φ = 0.85
based on a method developed by Aste et al employing a
statistical mechanics approach to the distribution of single

particle area fluctuations [43, 44]. In this framework, the
entropy is given by

S = k

[
1 + ln

( |Ā − Aideal|
k
2

)]
(4)

where Ā is the average Voronoi cell area of non-impurity
particles as measured in experiment, Aideal is the Voronoi cell
area of the ideal crystal at φ = 0.85, equal to the area of the
hexagonal crystal Voronoi cell, and 
 is a constant analogous
to the Debye length. The parameter k is calculated using the
standard deviation of the distribution of the measured Voronoi
area distribution, σv:

k = (Ā − Aideal)
2

σ 2
v

(5)

This measure of entropy characterises the deviation of the
observed Voronoi cell structure from that of the ideal single
crystal, and thus is zero for a perfect hexagonal arrangement
at area fraction φ = 0.85.

Figure 11 shows the measured entropy as a function of
impurity concentration where we have used 
 = 0.025σ . The
upward trend indicates that an increase in the concentration of
impurities results in a corresponding increase in the system’s
entropy as the resulting structure deviates more strongly from
that of the perfect crystal.

4. Discussion

Throughout our exploration of the role of impurity
concentration on polycrystalline structure a number of
lengthscales have been defined. Figure 12 summarises and
compares these data as a function of impurity concentration.
The black line is the mean distance between impurities, ρ−1/2

i ,
while the coloured points show data previously presented in
figures 4, 8 and 10.

Firstly, the two lengthscales characterising grain size can
be compared. The purple diamonds represent the correlation
length ξ6. The green circles are the lengthscale associated with

9
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Figure 11. Entropy calculated from the distribution of Voronoi cell
areas as a function of impurity concentration. Open diamond is
calculated from Monte Carlo simulation of the a single hexagonal
crystal at φ = 0.85 and thus is approximately zero. Dashed line is a
linear fit to the data.

Figure 12. Summary of the various lengthscales introduced in this
research as a function of impurity concentration. Black line
represents the average distance between impurities, ρ

−1/2
i . Purple

diamonds represent ξ6, previously shown in figure 8(b), purple
shaded region indicates the trend and scatter in the data. Green
circles are the lengthscale associated with the average grain size,

Lg/σ =
(

π

4φ

)1/2
〈Ng〉1/2, where 〈Ng〉 was previously presented in

figure 10(a). Green shaded region shows the trend in these data.
Red and blue triangles are recovery lengths, λ, extracted from
exponential fits to the envelopes of ψ6 and z as a function of
distance from an impurity, previously shown in figure 4(c). Red
shaded region spans the range of these recovery lengths.

the mean grain size Lg/σ =
(

π
4φ

)1/2
〈Ng〉1/2, where the term

in brackets accounts for the area occupied by a single particle
at area fraction φ. For the experimental value φ = 0.85, this

term
(

π
4φ

)1/2
≈ 0.96. While both of these lengths show a

decreasing trend with increasing impurity concentration, ξ6 is
much larger and decreases more steeply than Lg. Since ξ6

characterises orientational correlations it is sensitive to the
size of the largest grains. Conversely, Lg depends on the
average grain size, which is dominated by a large number of

small grains and thus is smaller than ξ6. It is interesting to
note that, in the range of impurity concentrations investigated,
Lg is very similar to the mean distance between impurities,
suggesting that the smaller grains form in the gaps between
nearby impurities.

The blue and red triangles in figure 12 represent
the structural recovery lengths λψ6 and λz extracted from
exponential fits to ψ6 and co-ordination number as a function
of distance from an impurity previously shown in figure 4(c).
These lengthscales are independent of impurity concentration
in the range considered and are consistently shorter than the
mean distance between impurities.

The implication of these observations is that there is a
separation of lengthscales in two-dimensional polycrystals
containing a low concentration of impurities. Local structural
distortions in the vicinity of an impurity occur only over
short distances compared to the inter-impurity distance and
are independent of the impurity concentration. Conversely, the
structure on lengthscales larger than the inter-impurity distance
(that is the size of the larger crystalline grains) is observed to
depend strongly on the impurity concentration.

5. Conclusions

Through experimental observations of dense colloidal
monolayers we have investigated the role of impurities
in determining polycrystalline structure in quasi-hard-discs.
Impurities in this system are of a similar size to the majority
spherical particles but are aspherical such that they may be
identified via their eccentricity. Such impurities tend to be
over co-ordinated, having z > 6 nearest neighbours and thus
introduce defects to the hexagonal lattice. As a result, in
the immediate neighbourhood of an impurity, particles tend
to be under co-ordinated, giving an excess of five-fold co-
ordinated defects in the impurity’s vicinity. We have shown
that, on moving away from an impurity, the average co-
ordination number and the local hexagonal bond orientational
order parameter, |ψj

6 |, recover to their background values after
a few particle diameters.

In the range of impurity concentrations investigated we
observe an increase in the number of defects on increasing
the number of impurities. This results in a decrease in
average ψ6 as the hexagonal lattice becomes increasingly
disordered and polycrystalline. Orientational correlations in
such polycrystalline systems are found to decay exponentially
as lattice alignment decorrelates on crossing a grain boundary.
Furthermore, as the impurity concentration is increased we find
the average polycrystalline grain size decreases and the system
entropy increases. Although our global structural measures are
limited due to the finite field of view, the trends are clear.

Our data show that local structural modifications due
to the presence of impurities are independent of their
concentration, while structure on longer lengthscales (i.e.
the size of polycrystalline grains) is determined by the
impurity concentration. The lengthscale of this crossover is
approximately the mean distance between impurities. The
results of this investigation are primarily geometric in origin,
arising from lattice distortions in the vicinity of misshapen

10



J. Phys.: Condens. Matter 27 (2015) 194108 A T Gray et al

impurities embedded in an hexagonal lattice of spherical
particles. As such, the trends identified should be generally
applicable to two-dimensional systems.
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