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We consider three popular model glassformers, the Kob–Andersen and Wahnström binary Lennard–Jones
models and weakly polydisperse hard spheres. Although these systems exhibit a range of fragilities, all feature
a rather similar behaviour in their local structure approaching dynamic arrest. In particular we use the dynamic
topological cluster classification to extract a locally favoured structure which is particular to each system. These
structures form percolating networks, however in all cases there is a strong decoupling between structural and
dynamic lengthscales. We suggest that the lack of growth of the structural lengthscale may be related to strong
geometric frustration.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Among the challenges of the glass transition is how solidity emerges
with little apparent change in structure [1,2]. However, using computer
simulation and with the advent of particle-resolved studies in colloid
experiments [3], it has become possible to construct and use higher-
order correlation functions [4–7]. These can directly identify local geo-
metric motifs in supercooled liquids, long-since thought to suppress
crystalisation in glassforming systems [8]. Other indirect approaches in-
clude the use of reverse Monte Carlo techniques to extract higher-order
information from two-point correlation functions [9] which is used in
metallic glassformers for example [10].

Suchmeasurements have correlated the occurrence of geometricmo-
tifs and slow dynamics in a number of glassformers in both particle-
resolved experiments on colloids [11–13] and simulation [14–18]. Iden-
tification of these motifs has led to the tantalising prospect of finding a
structural mechanism for dynamic arrest. It has been demonstrated
that at sufficient supercooling, there should be a coincidence in structural
and dynamic lengths, associated with regions undergoing relaxation for
fragile glassformers [19]. Thus recent years have seen a considerable ef-
fort devoted to identifying dynamic and structural lengthscales in a
range of glassformers. The jury remains out concerning the coincidence
of structural and dynamic lengthscales, with some investigations finding
agreement between dynamic and structural lengthscales in experiment
[20] and simulation [21–28], while others find that while the dynamic
lengthscale increases quite strongly, structural correlation lengths grow
weakly [29–37]. Other interpretations include decomposing the system
ry, Tyndall Avenue, Bristol, BS8

).
into geometric motifs and considering the motif system. One such effec-
tive system exhibits no glass transition at finite temperature [38].

Here we consider the approach of geometric frustration [39]. Geo-
metric frustration posits that upon cooling, a liquid will exhibit an in-
creasing number of locally favoured structures (LFS), which minimise
the local free energy. In some unfrustrated curved space, these LFS tes-
sellate, and there is a phase transition to an LFS-phase. In Euclidean
space, frustration limits the growth of the LFS domains. As detailed in
Section 2, the free energy associated with the growth of these LFS do-
mains may be related to an addition term to classical nucleation theory
(CNT), as illustrated schematically in Fig. 1.

Now in 2d monodisperse hard discs, the locally favoured structure
(hexagonal order) is commensurate with the crystal. The transition is
weakly first order to a hexatic phase which exhibits a continuous tran-
sitionwith the 2d crystal [40,41]. Thus in 2d onemust curve space to in-
troduce geometric frustration. This has been carried out by Sausset et al.
[42], curving in hyperbolic space, where the degree of curvature can be
continuously varied. Weakly curved systems have a strong tendency to
hexagonal ordering, whichwas controllably frustrated by the curvature.
However, theupper bound on all correlation lengthswas dictated by the
curvature in this system. In other words, frustration is encoded into the
system through the curved space, suppressing any divergent structural
lengthscales. However structural lengthscales were observed to grow
up to the limit set by the curved space [25,43].

In 3d, 600 perfect (strain-free) tetrahedra formed from 120 particles
can be embedded on the surface of a four-dimensional sphere [44,45].
Each particle in this 4d Platonic solid or “polytope” is at the centre of a
12-particle icosahedrally coordinated shell, and indeed simulations in-
dicate a continuous transition in this system [46–48]. However, a 120
particle system is clearly inappropriate to any investigation of increas-
ing lengthscales.
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Fig. 1. Schematic of geometric frustration limiting the growth of domains of locally
favoured structures. Solid line is conventional CNT with the first two terms in Eq. (1)
which would occur in the non-frustrated case. Dashed line denotes the effect of the
third term which incorporates frustration, leading to a preferred lengthscale for the LFD
domain ξD∗ .
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Here we focus on geometric frustration in 3d Euclidean space. We
carry out simulations on a number of well-known glassformers of
varying degrees of fragility: polydisperse hard spheres, and the
Kob–Andersen [49] and Wahnström binary Lennard–Jones mixtures
[50]. In each system we identify a system-specific locally favoured
structure [7], which becomes more prevalent as the glass transition
is approached. We measure the dynamic correlation length ξ4 and
identify a structural correlation length ξLFS [36,37]. We show that
the dynamic correlation length growsmuchmore than the structural
correlation length associated with the LFS in each system. The LFS do
not tile 3d space, but instead form system spanning networks. We
conclude that the growth of LFS in all these cases is strongly frustrat-
ed. Given the system specific nature of the LFS, we speculate that an
LFS-phase might not in principle require curved space and we sug-
gest that geometric frustration might be considered not as a function
of curvature but as composition.

This paper is organised as follows. In Section 2 we briefly consider
some pertinent aspects of geometric frustration theory, followed by a
description of our simulations in Section 3. The results consist of a con-
nection between the fragility of the systems studied placed in the con-
text of some molecular glassformers in Section 4.1. In Section 4.2 we
detail how the locally favoured structures are identified and discuss
the increase in LFS in Section 4.3. In Section 4.4 we show structural
and dynamic correlation lengths, before discussing our findings in
Section 5 and concluding in Section 5.

2. Geometric frustration

For a review of geometric frustration, the reader is directed to
Tarjus et al. [39]. The effects of frustration upon a growing domain
of locally favoured structures may be considered as defects, which
typically interact in a Coulombic fashion. Under the assumption
that frustration is weak, this argument leads to scaling relations
for the growth of domains of LFS, whose (linear) size we denote as
ξD. Weak frustration requires that its effects only become apparent
on lengthscales larger than the constituent particle size such that
σ b b ξD. Geometric frustration imagines an avoided critical point,
at Txc, which corresponds to the phase transition to an LFS state in
the unfrustrated system. At temperatures below this point, growth
of domains of the LFS in the frustrated systemmay follow a classical
nucleation theory (CNT) like behaviour, with an additional term to
account for the frustration. In d = 3 the free energy of formation
of a domain size ξD of locally favoured structures thus reads

FD ξD; Tð Þ ¼ γ Tð ÞξθD−δμ Tð Þξ3D þ sfrust Tð Þξ5D ð1Þ
where the first two terms express the tendency of growing locally
preferred order and they represent, respectively, the energy cost
of having an interface between two phases and a bulk free-energy
gain inside the domain. Eq. (1) is shown schematically in Fig. 1.
The value of θmay be related to the Adam–Gibbs theory [51] or Ran-
dom First Order Transition theory (RFOT) [52]. Without the third
term, long-range order sets in T = Tx

c, in the unfrustrated system.
Geometric frustration is encoded in the third termwhich represents
the strain free energy resulting from the frustration. This last term is
responsible for the fact that the transition is avoided and vanishes in
the limit of non-zero frustration [39]. While actually evaluating the
coefficients in Eq. (1) is a very challenging undertaking, one can at
least make the following qualitative observation. In the case of
weak frustration, one expects extended domains of LFS. However,
in the case of strong frustration, one imagines rather smaller do-
mains of LFS, as the third term in Eq. (1) will tend to dominate.
3. Simulation details

Our hard sphere simulations use the DynamO package [53]. This
performs event-driven MD simulations, which we equilibrate for
300 τα, in the NVT ensemble, before sampling in the NVE ensemble.
We use two system sizes of N = 1372 and N = 10976 particles, in
a five-component equimolar mixture whose diameters are [0.888σ,
0.95733σ, σ, 1.04267σ, 1.112σ], which corresponds to a polydisper-
sity of 8%. Here σ is a diameter which we take as the unit of length.
We have never observed crystallisation in this system. Given the
moderate polydispersity, we do not distinguish between the differ-
ent species. We use smaller systems of N = 1372 to determine the
structural relaxation time and the fraction of particles in locally
favoured structures. Static and dynamic lengths are calculated for
larger systems of N = 10976. Further details may be found in Ref.
[54].

We also consider the Wahnström [50] and Kob–Andersen [49]
models in which the two species of Lennard–Jones particles interact
with a pair-wise potential,

uLJ rð Þ ¼ 4�αβ
σαβ
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whereα andβ denote the atom typesA and B, and rij is the separation. In
the equimolarWahnströmmixture, the energy, length and mass values
are εAA = �AB = εBB, σBB/aAA = 5/6, σAB/σAA = 11/12 andmA = 2mB re-
spectively. The simulations are carried out at a number density of ρ =
1.296. The Kob–Andersen binary mixture is composed of 80% large
(A) and 20% small (B) particles possessing the same mass m [49]. The
nonadditive Lennard–Jones interactions between each species, and the
cross interaction, are given by σAA = σ, σAB = 0.8σ, σBB = 0.88σ,
�AA = �, �AB = 1.5�, and �BB = 0.5� and is simulated at ρ = 1.2. For both
Lennard–Jones mixtures, we simulate a system of N = 10976 particles
for an equilibration period of 300ταA in the NVT ensemble and sample
for a further 300ταA in the NVE ensemble. The results are quoted in re-
duced units with respect to the A particles, i.e. we measure length in

units of σ, energy in units of �, time in units of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=�

q
, and set

Boltzmann's constant kB to unity. Further details of the simulation of
the Wahnström and Kob-Andersen models may be found in [36,37]
respectively.

The α-relaxation time ταA for each state point is defined by fitting the
Kohlrausch–Williams–Watts stretched exponential to the alpha-regime
of the intermediate scattering function (ISF) of the A-type particles in
the case of the Lennard–Jones mixtures and of all particles in the case
of the hard spheres.



Table 1
Transition temperatures, fragilities and locally favoured structures for systems in Fig. 2. KA
denotes Kob–Andersenmixture,Wahn denotesWahnströmmixture andHS denotes hard
spheres. Note that, as a strong liquid, the fragility of silica is poorly defined (*) [55].

System T0, Z0 Tg, ϕg D LFS Reference

SiO2 * 820–900 K ~60 [56]
OTP 202 K 246 K ~10 [57]
KA 0.325 0.357 ± 0.005 3.62 ± 0.08 11A [37], this work
Wahn 0.464 ± 0.007 0.488 ± 0.005 1.59 ± 0.13 13A [36], this work
HS 28.0 ± 1.2 26.8 ± 1.0 1.711 ± 0.54 10B [66], this work
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4. Results

4.1. Fragility

We fit the structural relaxation time to the Vogel–Fulcher–Tamman
(VFT) equation

τα ¼ τ0exp
A

T−T0ð Þ
� �

: ð3Þ

Here τ0 is a reference relaxation time, the parameter A is related to
the fragilityD= A/T0 and T0 is the temperature of the “ideal” glass tran-
sition, at which τα diverges. Of course experimental systems cannot be
equilibrated near T0, so the experimental glass transition Tg is defined
where τα exceeds 100 s in molecular liquids. In the Angell plot in
Fig. 2, the silica and ortho-terphenyl are fitted with Eq. (3), along
with our data for the Wahnström and Kob–Andersen mixtures.
For our data, we obtain an estimate of Tg as the temperature at which
τα/τ0 ≈ 1015 with the VFT fit. We apply the VFT fit only for T b 1,
which denotes the onset temperature for the activated dynamics in
which VFT is appropriate. Higher temperatures exhibit an Arrhenius-
like behaviour [36,37]. The fragility is thenD=A/T0. Details of thefitted,
and literature [55,57,56] values are given in Table 1.

In the case of hard spheres, temperature plays no role and the pack-
ing fractionϕ is typically used as a control parameter, not least as it may
bemeasured in experiments, albeitwith limited precision [58,59]. How-
ever convincing arguments have beenmade byBerthier andWitten [56]
and by Xu et al. [60] that the reduced pressure Z= p/(ρkBT) where p is
the pressure is in fact more analogous to 1/T in molecular systems. One
result of this observation is that Z diverges at (random) close packing,
forming an analogy with the zero-temperature limit. In addition, the
VFT form may be generalised with an exponent δ in the denominator
[56,61].

τα ¼ τ0exp
A

Z0−Zð Þδ
� �

: ð4Þ

We have investigated fitting with Z and with ϕ, and in the case that
δ=1 have found little difference if wemake the significant assumption
that the Carnahan–Starling equation of state holds for Z(ϕ). Like
Berthier and Witten [56], we find good agreement with Carnahan–
Starling at all state points accessible to simulation. We have also inves-
tigated setting δ= 2.2, where we find Z0 = 45.39, a value at which the
Carnahan Starling relation corresponds to a value of ϕ0 ≈ 0.66 which is
slightly greater than random close packing. This difference with
SiO2

OTP

Wahn

KA
HS

Fig. 2. The Angell plot. Data are fitted to VFT (Eq. (3)) and Eq. (4) in the case of hard
spheres. HS denotes hard spheres where the control parameter is reduced pressure Z.
The “experimental glass transition” for hard spheres ϕg and the Lennard-Jones models
are defined in the text. Data for SiO2 and orthoterphenyl (OTP) are quoted from Angell
[55] and Berthier and Witten [56]. For the systems studied here, τ0 is scaled to enable
data collapse at Tg/T = ϕ/ϕg → 0.
previous work [56,61], may reflect our choice of hard sphere system.
At 8%, ours is weakly polydisperse. In any case, we have found a better
fit over a larger range of Z when δ = 1, and quote those values in
Table 1. The value of Z0 we obtain corresponds, via the Carnahan–
Starling relation to ϕ0 = 0.603. We also define a Zg using the VFT equa-
tion for hard spheres (Eq. (4)) in an analogous way to that which we
used to determine Tg for the Lennard–Jones mixtures.

As the values in Table 1 and Fig. 2 show, the Kob–Andersen, hard
sphere andWahnström systems exhibit progressively higher fragilities.
In Fig. 2, the Kob–Andersen system sits close to ortho-terphenyl in the
range of supercoolings accessible to our simulations.Wefind the fragility
of the former to be 3.62, while the latter is quoted to be around 10 [56,
57]. For our VFT fit to the Kob–Andersen mixture we took a literature
value [62] of T0 = 0.325, however a free fit of our data leads to a fra-
gility D≈ 7.06, close to the orthoterphenyl (OTP) value. Since OTP is
at the fragile end of molecular glassformers [55], Fig. 2 suggests that
the models considered here are fragile when compared to molecular
systems.

We emphasise that fitting VFT is not the only approach to determine
the fragility by any means [63]. In particular it is possible to consider an
energy of activation E(T) which is given by an Arrhenius form τα ∝ exp
[βE(T)] [64]. This approach has been carried out for both Lennard-Jones
mixtures considered here (in the isobaric-isothermal ensemble) [65]
where KA was again found to be less fragile than the Wahnström
model. Both were found to be less fragile than molecular glassformers,
which could reflect the limited dynamically accessible range. Here on
the other hand we have chosen to extrapolate our simulation data to
much larger dynamic ranges.
4.2. Identifying the locally favoured structure

In order to identify locally favoured structures relevant to the slow
dynamics, we employ the dynamic topological cluster classification al-
gorithm [36,37]. This measures the lifetimes of different clusters identi-
fied by the topological cluster classification (TCC) [7]. The TCC identifies
a number of local structures as shown in Fig. 3, including those which
are the minimum energy clusters for m = 5 to 13 Kob–Andersen [37]
and Wahnström [36] particles in isolation. In the case of the hard
spheres, minimum energy clusters are not defined. However we have
shown that the Morse potential, when truncated at its minimum in a
similar fashion to the Weeks-Chandler-Andersen treatment for the
Lennard–Jones model [68] provides an extremely good approximation
to hard spheres [69]. Clusters corresponding to the (full) Morse poten-
tial have been identified by Doye et al. [67] are included in the TCC.
The first stage of the TCC algorithm is to identify the bonds between
neighbouring particles. The bonds are detected using a modified
Voronoi method with a maximum bond length cut-off of rc = 2.0 [7].

In the case of the Kob–Andersen mixture, a parameter which con-
trols the identification of four- as opposed to three-membered rings fc
is set to unity thus yielding the direct neighbours of the standard
Voronoi method. Under these conditions, 11A bicapped square
antiprism clusters are identified [37,7], which have previously been
found to be important in the Kob–Andersen mixture [70]. For the
Wahnström mixture and the hard spheres, the four-membered ring
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Fig. 3. The structures detected by the topological cluster classification [7]. Letters correspond to different models, numbers to the number of atoms in the cluster. K is the Kob–Andersen
model [37], W is theWahnströmmodel [36]. Outlined are the locally favoured structures identified for the Kob–Andersenmodel (11A),Wahnströmmodel (13A) and hard spheres (10B).
Other letters correspond to the variable-ranged Morse potential, letters at the start of the alphabet to long-ranged interactions, later letters to short-ranged interactions, following Doye
et al. [67]. Also shown are common crystal structures.
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Fig. 4. Lifetime autocorrelation functions for the TCC clusters P(τℓ ≥ t). (a) Kob–Andersen
mixture T = 0.498, (b) Wahnström mixture T = 0.606 and (c) hard spheres Z = 25.1
(ϕ= 0.57). Particle colours show how the cluster is detected by the TCC [7].
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parameter fc = 0.82 has been found to provide better discrimination of
long-lived icosahedra [36].

In the dynamic TCC, a lifetime τℓ is assigned to each “instance” of a
cluster,where an instance is defined by the unique indices of the particles
within the cluster and the type of TCC cluster. Each instance of a cluster
occurs between two frames in the trajectory and the lifetime is the
time difference between these frames. We require that no subset of the
particles becomes un-bonded from the others during the lifetime of the
instance, i.e. we require that the same particles comprise the cluster
though out its lifetime. However due to bond breaking from thermalfluc-
tuations, sometimes the cluster bond topology can change. Such periods
are constrained to be less than τα in length.We interpret the longest lived
clusters detected in this way as locally favoured structures [36,37].

The measurement of lifetimes for all the instances of clusters is in-
tensive in terms of the quantity of memory required to store the in-
stances, and the number of searches through the memory required by
the algorithm each time an instance of a cluster is found to see if it
existed earlier in the trajectory. Therefore we do not measure lifetimes
for the clusters where Nc/N N 0.8, since the vast majority of particles
are found within such clusters and it is not immediately clear how dy-
namic heterogeneities could be related to structures that are pervasive
throughout the whole liquid. Here Nc/N is the fraction of particles in
the system which are included in a given cluster. For example five par-
ticles are included in 5A and 13 in the 13A icosahedron. We do not dis-
tinguish between particle types, and treat all parts of a cluster on an
equal footing. Some particles can be included in more than one cluster
because clusters (of the same type can overlap), but these only count
once towards Nc/N.

We plot the results of the dynamic TCC in Fig. 4 for a low tempera-
ture state point for the Lennard–Jones mixtures and for ϕ = 0.57 in
the case of hard spheres. This clearly shows the most persistent or the
longest lived of the different types of clusters in each system. All the
three systems exhibit rather similar behaviour, namely that the long-
time tail of the autocorrelation function indicates that some of these
clusters preserve their local structure on timescales far longer than τα,
and these we identify as the LFS. Thus for the Kob–Andersen mixture,
we identify 11A bicapped square antiprisms [37], for the Wahnström
model 13A icosahedra [36] and for hard spheres 10B. In the hard sphere
case, other clusters are also long-lived: 13A, 12B and 12D. However
these are only found in small quantities (≲2%), unlike 10Bwhich can ac-
count for up to around 40% of the particles in the system. Moreover, a
10B cluster is a 13A cluster missing three particles from the shell, thus
all 13A also correspond to 10B by construction. Related observations
have been made concerning the Kob–Andersen [37] and Wahnström
mixtures [36].
The fast initial drops of P(τℓ ≥ t) reflect the existence of large num-
bers of clusterswith lifetimes τℓ≪ τα. The lifetimes of these clusters are
comparable to the timescale for β-relaxationwhere the particles fluctu-
ate within their cage of neighbours. It could be argued that these clus-
ters arise spuriously due to the microscopic fluctuations within the
cage, and that the short-lived clusters are not representative of the
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actual liquid structure. However almost no LFS are found at higher tem-
peratures (or lower volume fraction in the case of hard spheres), cf.
Fig. 6, where microscopic fluctuations in the beta-regime also occur.
We have not yet found a way to distinguish between the short and
long-lived LFS structurally, so we conclude that the measured distribu-
tion of LFS lifetimes, which includes short-lived clusters, is representa-
tive of the true lifetime distribution.
4.3. Fraction of particles participating within LFS

Having identified the locally favoured structure for each system, we
consider how the particles in the supercooled liquids are structured
using the topological cluster classification algorithm [7]. We begin
with the snapshots in Fig. 5. It is immediately clear that the spatial dis-
tribution of the LFS is similar in all three systems. In all cases, at weak
supercooling isolated LFS appear, becoming progressivelymore popular
upon deeper supercooling. At the deeper quenches, the LFS percolate,
but the “arms” of the percolating network are around three–four parti-
cles thick. One caveat to this statement is that at high temperature, the
Kob–Andersenmixture exhibitsmore LFS than a comparable state point
1/T,

KA

Wahn

HS

Fig. 5. Snapshots of locally favoured structures in the three systems considered. In all cases partic
at 10% actual size and are grey. Top row:Kob–Andersenmixture for T=1, 0.6 and 0.5 from left t
row: Hard spheres for Z = 6.92, Z = 13, Z = 18.5 (ϕ = 0.4, 0.5, 0.55) from left to right.
in the Wahnström mixture. Furthermore, the geometry of the LFS do-
mains is clearly much more complex than spherical nuclei assumed in
classical nucleation theory (Fig. 1). Indeed one might imagine that
deconstructing such a complex structure to a single linear length may
warrant consideration.

In Fig. 6 we plot the fraction of particles detected within LFS for each
system NLFS/N. We consider the scaled structural relaxation time τα/τ0
(see Fig. 2) in Fig. 6(a). In Fig. 6(b) we show the population of LFS as a
function of the degree of supercooling, T0/T and Z/Z0 for the Lennard–
Jones and hard sphere systems respectively. We find that the hard
spheres show a dramatic increase in LFS, which appears to begin to
level off for high values of τα. Note that by construction, NLFS/N ≤ 1.
This levelling off has recently been observed in biased simulations of
the Kob–Andersen system,which exhibits a first-order transition in tra-
jectory space to a dynamically arrested LFS-rich phase [62]. Such a level-
ling off may also be related to a fragile-to-strong transition observed in
certain metallic glassformers [71]. Fragility has been correlated with a
significant degree of structural change [72]. If the population of LFS
somehow saturates (in any case, NLFS cannot exceed unity), then the
structure may change little upon deeper supercooling and it is possible
that a crossover to strong behaviour may be observed.
les identified in LFS are drawn to 80% actual size and coloured, other particles are rendered
o right.Middle row:Wahnströmmixture for T=1.0, 0.625, 0.606 from left to right. Bottom



a b
T0/T

Fig. 6. Fraction of particles in locally favoured structuresNLFS/N. (a) NLFS/N as a function of
τα/τ0. (b) NLFS/N as a function of T0/T and Z/Z0 for the Lennard–Jones and hard sphere sys-
tems respectively. In (a) τα/τ0 are offset for clarity.

a b

Fig. 7. Example fits to extract static and dynamic correlation lengths. (a) Fitting Eq. (7) to
obtain ξ4. (b) Fitting Eq. (8) to obtain ξLFS. Both (a) and (b) show data for theWahnström
model.
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Our simulations of the two Lennard–Jones systemsdo not reach such
deep supercooling, sowe have not yet determinedwhether they exhibit
the same behaviour. However the increase of LFS in the case of the Kob–
Andersen mixture is rather slower than the hard spheres, and the
Wahnström mixture is intermediate between the two. This correlates
with the fragilities of these three systems, Fig. 2. This connection be-
tween structure and fragility has been previously noted in the case of
the two Lennard–Jones mixtures [70].

Plotting as a function of supercooling, in Fig. 6(b), we find that the
Kob–Andersen mixture shows a slow increase in LFS population
which begins at quite weak supercooling, while hard spheres (recalling
that here the control parameter is Z) show a much more rapid growth
which begins at much deeper supercooling. The growth in LFS popula-
tion in the Wahnström mixture begins at deeper supercooling than
the KA, however the population growth is then quite rapid.

4.4. Static and dynamic lengthscales

4.4.1. Dynamic correlation length
We now turn to the topic with which we opened this article, the co-

incidence or otherwise of static and dynamic lengthscales in these sys-
tems. In order to do this, we calculate both, beginning with the
dynamic correlation length ξ4, following Lačević et al. [73]. We provide
a more extensive description of our procedure elsewhere [36]. Briefly,
the dynamic correlation length ξ4 is obtained as follows. A (four-
point) dynamic susceptibility is calculated as

χ4 tð Þ ¼ V
N2kBT

Q tð Þ2
D E

− Q tð Þh i2
h i

; ð5Þ

where

Q tð Þ ¼ 1
N

XN
j¼1

XN
l¼1

w r j t þ t0ð Þ−rl t0ð Þ
��� ���� �

: ð6Þ

The overlap functionw(|rj(t+ t0)− rl(t0)|) is defined to be unity if |
rj(t+ t0)− rl(t0)|≤ a, 0 otherwise, where a=0.3. The dynamic suscep-
tibility χ4(t) exhibits a peak at t = τh, which corresponds to the time-
scale of maximal correlation in the dynamics of the particles. We then
construct the four-point dynamic structure factor S4(k, t):

S4 k; tð Þ ¼ 1
Nρ

X
jl

exp −ik � rl t0ð Þ½ �w r j t þ t0ð Þ−rl t0ð Þ
��� ���� �*

�
X
mn

exp ik � rn t0ð Þ½ �w rm t þ t0ð Þ−rn t0ð Þj jð Þ
+
;

where j, l,m, n are the particle indices and k is the wavevector. For time
τh, the angularly averaged version is S4(k, τh). The dynamic correlation
length ξ4 is then calculated by fitting the Ornstein–Zernike (OZ) func-
tion to S4(k, τh), as if the system was exhibiting critical-like spatio-
temporal density fluctuations,

S4 k; τhð Þ ¼ S4½0; τhÞ
1þ kξ4 τhð Þð �2 ; ð7Þ

to S4(k, τh) for k b 2 [73].
Example fits to Eq. (7) are shown in Fig. 7a for the Wahnström

model. The resulting ξ4 values are plotted in Fig. 8. We see in
Fig. 8(a) that, as a function of τα/τ0, the ξ4 values for both Lennard–
Jones systems coincide. The dynamic correlation length for the hard
spheres rises more slowly across a wide range of τα/τ0. As was the
case with the population of LFS [Fig. 6(b)], plotting ξ4 as a function of
the degree of supercooling reflects the difference in fragility between
these systems [Fig. 8(b)]. For the Kob–Andersen mixture ξ4 rises at
comparatively weak supercooling, for hard spheres much more
supercooling is needed to see a change in ξ4.

Now the scaling of ξ4 with relaxation time has been examined previ-
ously. In the case of the Wahnström mixture, Lačević et al. [73] found
behaviour consistent with the divergence of ξ4 at the temperature of
the mode coupling transition. Whitelam et al. [74] obtained a ξ4 scaling
consistent with dynamic facilitation theory for the Kob–Andersen
mixture. More recently, Flenner [75] found ξ4 ∼ (τα)γ with γ ≈ 0.22
for the Kob–Andersen system. Kim and Saito have also found behaviour
consistent with power law scaling for both the Kob–Andersen and
Wahnström mixtures [76]. In the case of hard spheres, Flenner and
Szamel found ξ4 ∼ ln(τα) [77]. In Fig. 8 we find a slightly larger value
for the exponent γ≈ 0.3 for the Lennard–Jones models but find similar
behaviour for hard spheres as that noted by Flenner et al. [77]. However,
our hard sphere system is rather more monodisperse than the 1:1.4 bi-
narymixture they used,whichmight account for the fact that our data is
not entirely straight in the semi-log plot of Fig. 8. Moreover hard
spheres, and other systems do not always exhibit the same scaling for
all τα [77,78]. In any case, we emphasise that such “scaling” is hard to as-
sess on such small lengthscales (the entire range of ξ4 is less than a de-
cade), and the extraction of reliable values for ξ4 is far from trivial in
finite-sized simulations [29,79]. We thus believe that our finding of a
differing exponent in the case of the Kob–Andersen mixture to that of
Flenner and Szamel [75] reflects the challenges of extracting such
values. Furthermore, Flenner et al. have recently extended their analysis
to awider range of systemswhich seem to indicate a common scaling of
ξ4 across a range of systems, including some identical or similar to those
we consider which have a range of fragilities [80].

4.4.2. Static correlation length
We now consider how to determine a static correlation length for

the domains of locally favoured structures. It is clear from Fig. 5 that
the LFS percolate. Given that all state points we have been able to access
are necessarily far from T0, and that the LFS themselves have a limited
lifetime (Fig. 4), the existence of a percolating network of LFS does not
itself imply arrest. However, as has been previously noted by others



a b

Fig. 8.Dynamic ξ4 and static ξLFS lengths for the three systems considered. (a) ξ4 and ξLFS as
a function of τα/τ0. (b) ξ4 and ξLFS as a function of T0/T and Z/Z0 for the Lennard–Jones and
hard sphere systems respectively. In both figures, squares correspond to static length
scales and circles to dynamic lengthscales. In panel (a) the dashed lines correspond to
ξ4∼ (ταA)γwithγ=0.3 and ξ4∼ ln(τα) for KA (green) and hard spheres (pink) as indicated.
In panel (a) τα/τ0 are offset for clarity.
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[18,70] and ourselves [36,37], a percolating network of LFS has the po-
tential to accelerate the increase of τα upon supercooling. This is be-
cause the particles in the LFS act to slow down their neighbours and
because domains of LFS last longer than isolated LFS [36,37]. However,
identifying a lengthscale with the domain size of LFS, for example
the radius of gyration, leads to divergence in the supercooled regime
[36,37].

We thus turn to a method which allows a natural comparison with
the dynamic lengthscale ξ4. We define a structure factor restricted to
the particles identified within LFS:

SLFS kð Þ ¼ 1
Nρ

XNLFS

j¼1

XNLFS

l¼1

exp −ik � r j t0ð Þ
h i

exp ik � rl t0ð Þ½ �
* +

; ð8Þ

where NLFS is the number of particles in LFS. We then fit the Ornstein–
Zernike equation (Eq. (7)) to the low-k behaviour of the angularly-
averaged SLFS(k) in order to extract a structural correlation length ξLFS.
This procedure is akin to the calculation of the dynamic lengthscale ξ4:
first a structure factor is calculated from a selected fraction of the parti-
cles (either immobile or structured), and the Ornstein–Zernike expres-
sion used to extract a correlation length as shown in Fig. 7(b).

These ξLFS values are plotted in Fig. 8 for the three systemswe study.
Like the dynamic correlation lengths, the structural correlation lengths
increase upon cooling for the Lennard–Jones systems, while the hard
spheres show little change upon compression. However the manner in
which these lengths increase is quite different. The main result is that
the growth in the dynamic correlation length ξ4 is not matched by the
growth in the structural correlation length ξLFS. Indeed ξLFS ∼ σ through
the accessible regime. This is less than the apparent thickness of the do-
mains in Fig. 5; however we note that ξLFS follows a reciprocal space
analysis and that it may not directly correspond to the real space im-
ages. In any case the difference is only a factor of 2–3.

5. Discussion

5.1. Geometric frustration is strong in model glassformers

Fig. 8 provides a key result of this work. The correlation length relat-
ed to the domains of locally favoured structures is short, around one
particle diameter. Reference to Eq. (1) and Fig. 1 indicates that, accord-
ing to our linear measure, geometric frustration is strong in these sys-
tems, in other words ξD∗ = ξLFS ≈ σ.

Frustration has been demonstrated elegantly in curved space in 2d,
where it has been controlled by the degree of curvature [25,42,43].
However in 3d, the discussion involving 120 particles embedded on
the surface of a four-dimensional sphere formed perfect icosahedra
[44,45] assumes that these are monodisperse spheres. In addition to
the fact that monodisperse spheres are usually poor glassformers, we
have demonstrated here that very often, the LFS are not icosahedra.
Moreover, even in the case of the Wahnström mixture, it is far from
clear that the icosahedra formed would tessellate the surface of a
hypersphere with no strain as they are comprised of particles of differ-
ing sizes.

We suggest that other curved space geometries may enable the bi-
nary Lennard–Jones models to tessellate without strain. Alternatively,
simulations in curved space of a one-component glassformer, such as
Dzugutov's model [18] may enable frustration to be investigated in 3d.
Alternatively, controlling frustration with composition relates to work
carried out by Tanaka and coworkers [23,20] which emphasises the
role of medium-ranged crystalline order. However, unlike geometric
frustration where the LFS are amorphous structures which form in the
liquid and do not tessellate over large distances (Eq. (1)), the
medium-ranged crystalline order is distinct from the liquid, at least in
d=3 [81]. A further comment to bemade here concerns our identifica-
tion of 10B clusters in the hard sphere system we consider, which is at
odds with the local crystalline order found in hard spheres [23,20]. At
present this discrepancy is being investigated. Pending the results of
further analysis, we make the following observations. The TCC analysis
has shown no indication of significant quantities of crystal like struc-
tures. It has been demonstrated that the TCC successfully detects FCC
and HCP crystals and Lennard–Jones [7] and hard spheres [66]. We
thus speculate that the bond-order parameter threshold used in [23,
20] may allow some particles classified as 10B by the TCC to be
interpreted as crystal-like order.

5.2. Fragility and structure

A considerable body of work suggests a link between fragility and
the tendency of glassformers to develop local structure [72]. Strong
and network liquids, such as silica, tend not to show large changes in
local structure upon cooling [82], although edge-sharing tetrahedra
have been associatedwith fragility [83]. In 2d, significant correlation be-
tween fragility and tendency to locally order is found [21,22]. Recently,
the development of multitime correlations has identified new time-
scales of dynamic heterogeneity. In fragile systems (in particular the
Wahnström mixture), this becomes much longer than τα at deep
supercoolings [76].

In 3d, similar behaviour is found in metallic glassformers [84,85],
where in addition, glass-forming ability is associatedwith strong behav-
iour. However inmodel systems, such as hard spheres, in 3d at best only
a very weak correlation between glass-forming ability (polydispersity)
and fragility is found [86]. Moreover, systems with almost identical
two-body structure can exhibit different fragilities [87], although
higher-order structure in the form of LFS is correlated with fragility
[88]. Conversely, we have shown that, in systems with effectively iden-
tical fragility, the change in structure upon cooling need not be the same
[89]. In higher dimension, structure becomes less important, but fragile
behaviour persists [34]. Finally, some kinetically constrained models,
which are thermodynamically equivalent to ideal gases by construction,
exhibit fragile behaviour [90].

These observationsmake it clear that the development of local struc-
tural motifs upon supercooling is not always connected with fragility.
These caveats aside, the data presented here in Fig. 6 for the three sys-
tems we have studied do suggest that more fragile systems show a
stronger change in local structure upon supercooling. In particular, the
Kob–Andersen model, which is the least fragile of the mixtures we con-
sider, shows a continuous rise in bicapped square antiprisms across a
wide range of temperatures. This is in marked contrast to the
Wahnström mixture and hard spheres, both of which show a sharper
rise in LFS population. We note that similar behaviour has been ob-
served previously for the two Lennard–Jones mixtures [70].
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5.3. Outlook

Our work paints a picture of decoupling between structural and dy-
namic lengthscales in the simulation-accessible regime, which covers
thefirstfive decades of increase in structural relaxation time τα. By com-
parison, as shown in Fig. 2, the molecular glass transition at Tg corre-
sponds to some 15 decades of increase in relaxation time. That the
structural lengthscale decouples so strongly from the dynamic
lengthscale ξ4 suggests that larger regions than those associated with
the LFS are dynamically coupled. As noted above, similar results
have been obtained previously, using a variety of different measures
[30–34,36,37].

The picture that emerges is one of the disparities between ξ4 and the
majority of structural lengths, as illustrated in Fig. 9. This leaves at least
three possibilities:

1. Dynamic and structural lengths decouple as the glass transition is
approached. And thus although structural changes are observed in
many fragile glassformers, they are not a mechanism of arrest.

2. ξ4 is not representative of dynamic lengthscales, or its increase as a
function of supercooling is not sustained.

3. The majority of data so far considered is in the range of T N TMCT and
thus is not supercooled enough for RFOT or Adam–Gibbs-type coop-
eratively re-arranging regions dominate.

We believe that a combination of all three, weighted differently de-
pending on the model, is the most likely outcome. Some evidence for
the first scenario is given by the fact that the kinetically constrained
models [90] and hyperspheres in high dimension [34] undergo arrest.
If one accepts either of these (admittedly abstract)models, the structure
cannot be a universal mechanism for dynamical arrest.

Further evidence in support of scenario one, one is provided by
Cammarota and Biroli [91] who show that pinning a subset of particles
can drive the ideal glass transition of the type envisioned by random
first order transition theory. Under the pinning field, no change in struc-
ture occurs (subject to certain constraints) as a function of pinned par-
ticles, but a bona-fide glass transition as described by the RFOT theory
does [91]. One possibility to note is that, as temperature drops, a
lower concentration of pinned particles is required for this pinning
glass transition and that the transition is somehowdriven by a combina-
tion of structure and pinning. Moreover, the separations between the
struct

dyn

Fig. 9. Schematic of the possible behaviour of dynamic (ξdyn) and static (ξstat) lengthscales
as the glass transition is approached. Particle-resolved studies data from colloid experi-
ment and computer simulation is available for T ≳ TMCT (solid lines). Dashed lines repre-
sent a possible scenario at lower temperatures, extrapolated from recent simulations
[32]. Green dot is dynamic length ξ3 deduced from molecular experiments close to Tg
[93]. Purple dashed line represents coincidence of structural and dynamic lengths of coop-
eratively re-arranging regions envisioned by the RFOT and Adam–Gibbs theory.
pinned particles in the simulation accessible regime can approach one
or two particle diameters [92], suggesting rather small cooperatively
re-arranging regions.

However the comparatively rapid increase in ξ4 is not without ques-
tion. Firstly, as indicated in Fig. 9, ξ4 seems to increase rapidly in the re-
gime accessible to particle-resolved studies in the regime T ≳ TMCT [94].
Indeed, a free fit to the measurements of ξ4 for our data using the Kob–
Andersenmodel yielded divergence close to theMode-Coupling temper-
ature [37], whichmay be an “echo” in d=3 of the mean-field MC tran-
sition. We find that the “critical exponent” is ν = 0.588 ± 0.02, the
“critical temperature” is TC = 0.471 ± 0.002 and the prefactor is ξ40 =
0.59± 0.02. Under the caveat that obtaining ξ4 from fitting S4 in limited
size simulations is notoriously problematic [75,79] and thus any numer-
ical values should be treated with caution, we observe that the value of
TC is not hugely different to the transition temperature found by fitting
Mode-Coupling theory to this system, around 0.435 [49,95]. We also
note that ν = 0.588 lies between mean field (ν = 0.5) and 3D Ising
(ν = 0.63) criticality. Moreover among early papers involving ξ4,
Lačević et al. showed the divergence of this dynamic length around
TMCT. Furthermore, a recent paper by Kob et al. [32] indicates non-
monotonic behaviour of a dynamic correlation length based on pinning
with a maximum around TMCT as indicated in Fig. 9. These results are
not without controversy [96,97], but it has since been shown that, just
below TMCT, at the limit of the regime accessible to simulations, ξ4 can
tend to saturate [98] and at least exhibit a different scaling [99].

Additional evidence that the dynamic correlation length might not
diverge as fast as the data from the T N TMCT range might indicate is
given by experiments on molecular glassformers close to Tg, some 8–
10 decades increase in relaxation time compared to the particle-
resolved studies. This approachmeasures a lower bond for the dynamic
correlation length [93]. The lengths obtained by this approach corre-
spond to a fewmolecular diameters [93,100,101]. Such a small dynamic
correlation length (at Tg albeit a lower bound) certainly necessitates at
the very least a slowdown in the rate of increase of ξdyn followed by a
levelling off. Finally, we emphasise that ξ4 may not be the only means
to define a dynamic length [94,32].

Another possibility is to question the decomposition of the complex
geometries indicated in Fig. 5 onto a single linearmeasure. Clearly this is
a simplification and one which is not necessarily justified. Indeed these
networks percolate, which implies that the radius of gyration of the do-
mains of LFSmust diverge. Percolation of LFSwhich occurs at suchmod-
erate supercooling indicates that the divergence of the radius of
gyration of domains does not lead to arrest [36]. However other analy-
ses of the LFS network may provide further insight.

It is tempting to imagine that in the TMCT N T N Tg range (or even in
the regime below Tg), structural and dynamic lengths might scale to-
gether, corresponding to well-defined cooperatively re-arranging re-
gions (Fig. 9). The discussion of geometric frustration, and in
particular Eq. (1) suggests that an increase in structural lengthscale
might necessitate either a decrease in frustration, or “surface tension”
or the thermodynamic driving force to form locally favoured structures.
Calculating any of these quantities, given the short lengthscales and
complex geometries involved, appears a formidable task, but which
might provide a framework for increasing structural lengthscales at
deep supercooling.

For now, however, the jury is well and truly out as to the nature of
any structural mechanism for dynamic arrest. Locally favoured struc-
tures can be identified and form networks which might at deeper
supercooling (T b TMCT) lead to the emergence of solidity in
glassforming liquids. Hints in this direction are evidenced from the
growth in LFS with supercooling, that particles in LFS are slower than
average and that they retard the motion of neighbouring particles [36,
37] although the degree to which LFS predict the dynamics in the acces-
sible regime is limited [102]. However the discrepancy observed by
some between structural and dynamic lengthscales in the T ≳ TMCT

range is indicative that more is at play than structure at least in the
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first few decades of dynamic slowingwhich are described by theMode-
Coupling theory.

6. Conclusions

In three model glassformers, we have identified the locally favoured
structure with the dynamic topological cluster classification. Each sys-
tem exhibits a distinct LFS, which lasts longer than all other structures
considered: the 11A bicapped square antiprism in the case of the Kob–
Andersen model, the 13A icosahedron for the Wahnström mixture
and the 10B cluster for hard spheres. In all these systems, the LFS form
a percolating network upon supercooling in the simulation accessible
regime. In the dynamical regime accessible to simulation, the formation
of this network does not correlate with dynamic arrest: all our systems
continue to relax after a percolating network of LFS has formed. The net-
work formation is qualitatively similar in all systems, although the less
fragile Kob–Andersen mixture exhibits a less dramatic rise in LFS popu-
lation than either theWahnströmmixture or hard spheres. We investi-
gate structural and dynamic lengthscales. In all cases the dynamic
length ξ4 increasesmuch faster than the structural length in the dynam-
ic regime accessible to our simulations. The lack of growth of the struc-
tural correlation length appears compatible with strong geometric
frustration.
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