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We consider a binary Lennard-Jones glassformer whose super-Arrhenius dynamics are correlated
with the formation of particles organized into icosahedra under simple steady state shear. We recast
this glassformer as an effective system of icosahedra [Pinney et al., J. Chem. Phys. 143, 244507
(2015)]. From the observed population of icosahedra in each steady state, we obtain an effective
temperature which is linearly dependent on the shear rate in the range considered. Upon shear banding,
the system separates into a region of high shear rate and a region of low shear rate. The effective
temperatures obtained in each case show that the low shear regions correspond to a significantly
lower temperature than the high shear regions. Taking a weighted average of the effective temperature
of these regions (weight determined by region size) yields an estimate of the effective temperature
which compares well with an effective temperature based on the global mesocluster population of the
whole system. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4968555]

I. INTRODUCTION

The mechanism behind the rapid dynamic slowing in
liquids approaching the glass transition remains a mystery.
There are many theoretical approaches to this problem, but
a consensus on the nature of the liquid-to-glass transition
is yet to be reached.1,2 It has been proposed that icosa-
hedral arrangements of the constituent atoms may form in
some supercooled systems3 and that dynamic arrest may be
related to a (geometrically frustrated) transition to a phase of
such icosahedra.4,5 Geometric motifs such as icosahedra and
other locally favoured structures (LFSs) can be identified in
particle-resolved colloidal experiments6–12 and computer sim-
ulations.13–20 In particular, it has been shown that the onset of
slow dynamics in simulated Lennard-Jones systems is closely
coupled to the local structure, characterized by the LFS.18,21,22

A significant barrier to understanding the glass transition
is its inaccessibility. Glassy systems have time scales that far
exceed the practical limits of the experimental or computa-
tional analysis.2,23 The operational glass transition is currently
defined as the point when the liquid’s viscosity exceeds a high
enough value, i.e., when the particles exhibit dynamic arrest
on “reasonable” time scales.2 The temperature at which this
happens is Tg. Direct detection of LFS and analysis of particle-
resolved colloidal experiments and computer simulations are
restricted to the first 4-5 decades of dynamic slowing, com-
pared to 14 decades required to reach the operational glass
transition (Tg) in molecular systems. Note that Tg is dis-
tinct from lower temperatures at which the relaxation time

a)Electronic mail: paddy.royall@bristol.ac.uk

of the material may diverge, such as that predicted by the
Vogel-Fulcher-Tamman expression.2,23

A complete picture of the glass transition therefore neces-
sitates data extrapolation far below the accessible regime.24

Our previous publication25 details how we have used the
behavior of the LFS (icosahedra) to recast a well-studied
binary Lennard-Jones glassformer into an effective system
of LFS. To do so we have developed a population dynamics
model of domains of icosahedra which we term mesoclusters.
Our model successfully describes the increase in the relaxation
time in terms of increasing mesocluster sizes and lifetimes as
temperature is decreased and can be used to predict the sys-
tem behavior at significantly colder temperatures than those
accessible to simulations. By construction, our model does not
predict a thermodynamic phase transition to an “ideal glass.”

In direct simulation and colloid experiments,26 a possi-
ble approach to probing deeper supercooling is to impose
a shearing force on the system. Quiescent glasses exhibit
dynamic heterogeneity; regions of high and low mobility.
Shearing such an amorphous system can highlight the struc-
tural and dynamical subtleties that underlie glassy systems
which may not have been otherwise observable. It has been
shown that the local liquid-like (high mobility) regions can
act as “plasticity carriers”27 and shearing amorphous systems
can allow the observation of some (otherwise elusive) long-
range correlations in a colloidal glass.28 In both experiments
and computer simulations, locally “soft” and “hard” regions
of the system, characterized by normal vibrational modes of
inherent structures (soft modes),29–32 and structural proper-
ties such as softness,33 configurational fluctuations that are
susceptible to stress driven shear transformations (shear trans-
formation zones, STZs),34–36 and localized regions of strong
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deformations (hot spots),37 have been shown to play a key
role in the dynamics of supercooled liquids and the mechan-
ics of amorphous solids. These can be used to predict when
and where deformations will take place in sheared sys-
tems.32,33,38–40 Recently, shear has been used to access the so-
called Gardner transition41 between glass states with differing
stabilities.42,43

Imposing different shear rates can result in observing
transitions between different states, such as a continuous
phase transition between brittle and hardening behavior,44 a
dynamic transition between diffusive and arrested states,45

and a first-order phase transition between banded and non-
banded states.46–48 Shear banding is the separation of a sheared
system into two regions of different viscosity and internal
structure.48,49 Some suggested mechanisms for the formation
of shear bands are via the percolation of STZs40,50 or from
high stress localization in inherent defects or voids in the sys-
tem.51 Shearing has also been shown to increase the energy
of soft glassy materials, called rejuvenation,52,53 and vary-
ing the shear rate can yield systems with different effective
temperatures.54–56 That is, increasing (decreasing) the shear
rate is akin to increasing (decreasing) the temperature of the
system.

Here we study the Wahnström binary Lennard-Jones
glassformer57 under an imposed uniform planar shear. The
LFS for this system was identified as the icosahedron fol-
lowing an analysis of local environments of the constituent
particles.14 Subsequently, one of us investigated the lifetimes
of 33 different structures, chosen to minimise the local poten-
tial energy.58,59 Of these, the icosahedron was found to last
around a decade longer than other structures with a distinct
bond topology.18

We find it is possible to obtain the steady state behaviour
at temperatures both above and below the glass transition tem-
perature, which for our purposes is the temperature at which a
Vogel-Fulcher-Tamman (VFT) fit would diverge, TVFT ≈ 0.46
(Fig. 1). At sufficient shear rates, temperatures which were
inaccessible in quiescent simulations will reach a steady state

FIG. 1. State diagram for the Wahnström model under shear. The effective
temperatures obtained when systems with set simulation temperature T are
sheared with rates γ̇τα (Eq. (3)). Effective temperatures are shown as colour
contours. Circular points indicate systems where τα is directly calculable; tri-
angular points are placed on the effective temperature contour corresponding
to the simulation temperature T. Black points indicate banding, white points
do not exhibit banding (see Eq. (6) for criteria).

and exhibit some characteristics, probed by the structural prop-
erties of the LFS, typical of an effective temperature that
is higher than the actual simulation temperature. Previous
attempts to define effective (or fictive) temperatures have used
quantities such as free volume,60 energy,61,62 and interparti-
cle forces.63 It is our aim to understand these sheared systems
with an effective temperature determined by a local structure,
i.e., mesoclusters. Using the observed mesocluster properties
in the sheared system and comparing them to our existing
(temperature dependent) quiescent mesocluster model,25 it is
possible to determine the effective temperature of the sheared
system. For systems that exhibit shear banding, we can deter-
mine the effective temperature of each region (high and low
shear bands) using the same method. We find that increasing
the shear rate results in an increase in the effective tempera-
ture of the whole system and that the high and low shear bands
have distinct effective temperatures; the high shear band has a
significantly increased effective temperature.

This paper is organized as follows: we discuss the simu-
lation protocol in Section II. Section III shows our effective
temperature analysis for all simulations (all temperatures, all
shear rates) looking at the “global” system; the system as a
whole. Section IV focuses on the systems that have exhib-
ited shear banding where we study the high and low shear
bands separately by cutting the simulation boxes into their rel-
evant segments. We conclude with a summary and discussion
in Section V.

II. SIMULATION DETAILS

We simulate the Wahnström equimolar binary Lennard-
Jones model.57 The size ratio is 5/6 and the well depth between
all species is identical. The mass of the large particles is twice
that of the small. We use molecular dynamics simulations of N
= 10 976 particles. We equilibrate for at least 100τα in the NVT
ensemble for 0.56 ≤ T ≤ 0.8 and use the final configuration
for T = 0.56 to initiate further NVT simulations at temperatures
0.3 ≤ T ≤ 0.5 for as long as computationally possible. Here
τα is the structural relaxation time determined by a stretched
exponential fit to the intermediate scattering function.25

The final configuration of each simulated temperature is
used as the initial configuration of a sheared simulation fol-
lowing the SLLOD algorithm with Lees-Edwards periodic
boundary conditions. All of these sheared simulations were
carried out using LAMMPS.64 The shear rates studied (in sim-
ulation units) are 10−5 ≤ γ̇ ≤ 0.25 for 0.56 ≤ T ≤ 0.8 and
2.5 × 10−6, 5 × 10−6, and 10−5 for 0.3 ≤ T ≤ 0.5. In our
simulations, the yield point occurs at a strain γ ≈ 0.1. Here
we take the steady state to correspond to γ > 1.65 We simu-
late up to strain values in excess of γ = 2, except in the case
T = 0.3, γ̇ = 2.5 × 10−6 where computational limits restrict
the amount of strain simulated to γ = 1.5.

We identify icosahedra with the topological cluster clas-
sification (TCC) and consider those which last longer than
0.1τα (for 0.56 ≤ T ≤ 0.8) or longer than 150 simulation time
units (for 0.3 ≤ T ≤ 0.5) to suppress the effects of thermal
fluctuations. Here τα is the structural relaxation time, deter-
mined from a fit to the intermediate scattering function.25 Our
structural analysis protocol is detailed in Ref. 66.
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III. SHEARED SYSTEMS: A GLOBAL APPROACH

Shearing the system enough to reach a steady state (far
beyond the yield point where steady stress is achieved) enables
us to reach a steady state to temperatures that are otherwise
inaccessible. By simulating a sheared system at an other-
wise inaccessible temperature and modeling the mesocluster
properties, it is possible to obtain a shear-rate dependent meso-
cluster model alongside the existing temperature-dependent
mesocluster model. By combining two such models, we can
more accurately predict the mesocluster properties (and thus
the relaxation times) at temperatures approaching the glass
transition. An overview of the results, and the state space
accessible to the simulations, is shown in Fig. 1.

A. Recap of population dynamics model

First, we briefly introduce the population dynamics model
which generates the mesocluster size distribution from Ref. 25.
Mesoclusters are structures made up of particles in icosahedra,
the LFS for the Wahnström model glassformer.14,18 We assume
that mesoclusters of size m (m being the number of centres of
icosahedra) can only change in size by ±1 and are restricted
in size by a system-size dependent constant M. For high tem-
peratures, pm (the probability of a mesocluster being size m)
follows an exponential decay with a steady-state solution

pm(T ) = a(T )m−1p1(T ), (1)

where a(T ) is the temperature-dependent decay parameter. At
lower temperatures, the mesoclusters percolate, and as such
the shape of their size distribution changes. We account for
this change by including a Gaussian weighting to obtain the
steady state solution

pm(T ) = a(T )Wm(T )pm−1(T ), (2)

where a(T ) is an underlying decay parameter and Wm(T )
is the Gaussian weight which includes “mean” and “vari-
ance” parameters to control the shape of the distribution. Our
previous publication25 discusses our mesocluster size model
parameters in detail.

The mesocluster size distribution expected for a quies-
cent system at simulation temperature, T, may be described
by Eq. (2). Supposing a sheared system exhibits mesocluster
size distributions that are well described by this model (with
no changes to the parameterization), we can conclude that at
the level of our population dynamics model, the structure of
the sheared system is similar to a quiescent system at model
temperature T. Since the structure (characterized by LFS) and
dynamics have been shown to be coupled in Lennard-Jones
systems,18,21,25 we could expect the system dynamics of the
sheared system to be similar to those of the quiescent system
at model temperature T.

B. The effect of shear on the mesoclusters

We consider the changing mesocluster size distributions
with varying shear rate for the full simulation box. Using the
mesocluster size model, as parameterized using the quiescent
data from Ref. 25 (recalling Eq. (2)),

pm(T ) = a(T )Wm(T )pm−1(T ),

FIG. 2. The mesocluster size distribution for systems with T = 0.58 and
varying shear rate given in terms of ταγ̇ in the legend for 0 ≤ ταγ̇ ≤ 3.02.

we can select a value of T = T eff which results in the best
fit of the model distribution to the observed mesocluster data
for the sheared systems. It is this value of T eff that we use
as the effective temperature of the system. Figure 2 shows
the different mesocluster size distributions produced by vary-
ing the shear rate γ̇ imposed on systems with T = 0.58.
The mesocluster model distributions for the quiescent system
(solid lines) are plotted alongside the simulation data for the
system under shear. In each case, higher shear rates produce
mesocluster size distributions typical of systems at higher
temperatures.

For all systems, Teff → Ttrue as the shear rate is decreased.
Here T true is the “true” simulation temperature. Figure 3 shows
the effective temperature in the sheared systems converging to
the true simulation temperature. This can be fitted linearly
using the following:

Teff

Ttrue
= 0.271γ̇τα + 1. (3)

FIG. 3. As shear rates ταγ̇ are decreased, the effective temperature T eff con-
verges to the “true” simulation temperature T true. For all temperatures, this
happens at ταγ̇ . 0.01. Error bars are included on some T = 0.8 data points
where the mesocluster statistics are limited due to low numbers of icosahedra
and fitting the data is less constrained. Low temperature data, i.e., T = 0.3, are
not included in this figure since τα for such systems is not defined under our
VFT fit with T0 = 0.46.
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FIG. 4. The mesocluster size distribution for systems with T = 0.3 and vary-
ing shear rate, given in terms of simulation units in the legend. Fitted
model lines correspond to T = 0.556, 0.552, 0.548, corresponding to a
decrease in temperature as the shear rate decreases.

At low shear rates ταγ̇ < 0.01 for any simulated temperature,
Teff ≈ Ttrue.

Figure 4 shows the mesocluster size distributions for
T = 0.3; a significantly lower temperature than what is acces-
sible in the quiescent regime and in fact lower than TVFT . Thus
the α-relaxation time, τα, for this low temperature system is
assumed to be infinite. Using the mesocluster size distribu-
tions from our population dynamics model,25 we see that the
effective temperatures of these sheared systems decrease as
the shear rate is decreased and are significantly colder than
we have previously been able to access via quiescent systems
(T eff = 0.556, 0.552, and 0.548 in these sheared systems;
quiescent systems are limited to T & 0.57).

Across all temperatures and shear rates studied, the overall
observed shape of the mesocluster distributions in the data sets
and the model predictions are in excellent agreement with each
other. Thus the data in the sheared systems can be accurately
described by the mesocluster population model, and based on
this observation we can assign an effective temperature to each.
Furthermore, the deviation of the effective temperature from
the true system temperature is linearly dependent on the rate
of shear. In other words, within our mesocluster model shear
rate and temperature can be superposed over one another. This
observation is made more remarkable by the fact that some of
the state points we consider exhibit shear banding, which we
now consider. Figure 1 shows the effective temperatures, T eff ,
of systems with varying simulation temperatures, T, and shear
rates following Eq. (3).

IV. SHEAR BANDING

So far, we have looked at the global mesocluster properties
of the sheared systems. However, these systems exhibit shear
banding, characterized in this case by a persistent y-axis depen-
dence (perpendicular to the flow direction) in the icosahedra
population and the corresponding local particle displacements
measured using the non-affine deformation parameter, D2

min,34

and local shear rate. Figure 5 shows a schematic of D2
min values

expected in affine and non-affine displacements. Equation (4)
is the definition of D2

min as given in Ref. 67, where N is the

FIG. 5. A schematic of D2 values in affine (top) and non-affine (bottom)
displacements. For affine displacements, D2 is uniformly minimized (equal
to zero in the ideal case). In non-affine displacements, D2 takes larger values
located along the shear gradient discontinuity.

number of neighbouring particles within the interaction range
of a central particle, and the positions of the central particle,
n = 0, and neighbouring particles, n ∈ [1, N], given by rn(t)
and rn(τ) at times t and τ = t−∆t, respectively. We henceforth
drop the subscript “min” for ease of notation in later equations,

D2(τ, t) =
N∑

n=1

Rn · RT
n , (4)

Rn =
(
rn(t) − r0(t)

)
−

(
XY−1

)
·
(
rn(τ) − r0(τ)

)
,

X =
N∑

n=1

(
rn(t) − r0(t)

) (
rn(τ) − r0(τ)

)
, (5)

Y =
N∑

n=1

(
rn(τ) − r0(τ)

) (
rn(τ) − r0(τ)

)
.

Figure 6 shows examples of banded and non-banded
sheared systems, distinguished by the values of shear rate, D2

and the relative density of icosahedra in each binned region of
the y-axis for the progressing simulation time. We see that D2

provides a clearer interpretation than the local shear rate.
In Fig. 6, we consider two representative temperatures,

T = 0.56 and T = 0.8. In the former case, the product of the
shear rate and the structural relaxation time ταγ̇ = 0.0132:
here both the structure (in terms of the population of icosahe-
dra) and the shear band are long lived. Conversely, at the higher
temperature, ταγ̇ = 5.91 × 10−5 and no banding is observed.
Figure 7 shows the total correlation coefficient between D2 and
the density of icosahedra for all T and γ̇ obtained from data
such as those shown in Fig. 6. In banded systems, the correla-
tion coefficient is strongly negative. The correlation between
the shear rate and D2 across the binned regions of the y-axis
is strong in systems where banding is exhibited. This suggests
that there may be a causal relationship between the icosahedra
dense regions of the system and the slow shear bands (this will
be investigated in a future publication65).

The simulation box was segmented along the y-axis to
form 20 equal bins of roughly 1 particle diameter in height.
Each bin is characterized by the average D2 value of all the
particles residing within that bin. To quantify whether or not a
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FIG. 6. Time-evolution of the shear rate for each y-axis region given in terms of particle diameters σ from the bottom of the y-axis, (a) and (b), non-affine
dynamics (c) and (d), and population of icosahedra (e) and (f) for selected state points. Left column: T = 0.56,ταγ̇ = 0.0132 exhibits banding. Right column:
T = 0.8,ταγ̇ = 5.91 × 10−5 does not exhibit banding.

system is banding, we compare the average range of different
D2 values observed across the y-axis with the average range
of D2 values observed within each y-axis slice through time

R =

〈
D2

max − D2
min

〉
y〈

D2
max − D2

min

〉
t

, (6)

where subscripts y and t are the parameters to be averaged
over the y-axis and time, respectively. The value of R quan-
tifies how strongly banded the system is. Strong banding is
characterized by large values of R. Systems which appear to
fluctuate between banding and not banding through time have
values 0.9 . R . 1.1. R < 0.9 suggests that the system is not
banding at all. Figure 8 shows the resulting values of R for a
number of state points.

A. Identifying the shear bands

Since the population of icosahedra has a y-axis depen-
dence in the shear banded systems, it should be the case that

FIG. 7. Correlation coefficients for state points with varying T and γ̇ (simula-
tion units). For comparison, correlation coefficients for quiescent state points
are –0.58, –0.6, –0.5, and –0.38 for T = 0.6, 0.65, 0.7, and 0.8, respectively.

the mesocluster distributions vary across these regions. The
average non-affine deformation, D2, and the proportion of par-
ticles in icosahedra, φ, values were calculated for each y-axis
bin. From these we obtain local deviations in D2 and φ as
follows:

∆D2 =
D2 − D̄2

D̄2
,

∆φ =
φ − φ̄

φ̄
.

(7)

∆D2 and ∆φ are plotted against each other in Fig. 9. From this
plot, we can see that the proportion change in φ can be deter-
mined (and predicted) from a linear mapping of the proportion
change in D2. Note that this linear mapping passes through the
origin, i.e., no change in D2 means no change in φ.

The banded systems exhibit one low shear region (low D2,
high icosahedra density) and one high shear region (high D2,

FIG. 8. The values of the banding criterion R (Eq. (6)) over a range of temper-
atures and shear rates. Deep blue indicates no banding and orange/red indicate
very strong, persistent banding. Intermediate colours indicate systems which
may exhibit a mix of behaviours through time, suggesting weak or intermittent
banding.
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FIG. 9. Deviations in icosahedra population as a function of non-affine defor-
mations [Eq. (7)]. Blue: T = 0.3. Green: T = 0.56. Yellow: T = 0.58. Red:
T = 0.6. Circles: γ̇ = 1×10−5, triangles: γ̇ = 2.5×10−5, squares: γ̇ = 5×10−5.
Blue triangles: γ̇ = 5 × 10−6, blue squares: γ̇ = 2.5 × 10−6.

low icosahedra density). We can quantitatively define these
regions by using the D2 values. The simplest way of separat-
ing these regions would be to cut along the average D2 value
and look at the above (below) average segments. However, the
D2 values do not show any sharp transition from above (below)
average. Instead, they smoothly increase (decrease) over the
y-axis bins; thus blurring the exact boundary locations between
the two regions. For this reason, we partition the simulation
box into three types of regions: high shear, low shear, and
“interface.” These interface regions are often small (the sys-
tem is dominated by the high and low shear regions) and likely
to be non-trivial combinations of low and high shear behavior;
however, we would expect them to behave approximately as
an “average” between high and low. Since we are mainly inter-
ested in the behavioral differences between the high and low
shear regions, we will focus only on these segments. The dif-
ferent segments can be defined using the following boundary
definitions:

Sh = D2
av +

D2
max − D2

av

A
,

Sl = D2
av −

D2
av − D2

min

A
,

(8)

where A is a number which can be chosen to increase or
decrease the size of the interface regions (we set A = 2), and
Sh(Sl) represents the lower (upper) D2 boundary value of the
high (low) shear segment.

B. Mesocluster sizes in the bands

Once the different shear rate segment locations have been
determined, the mesocluster size analysis can be carried out
on each segment individually. Now the mesocluster size model
is system size dependent due to the effect of the percolating
mesocluster upon the size distribution. We have previously
determined suitable parameters for the model for N = 1372,
10 976, and 87 808.25 These we interpolate here, noting
that the model parameters were obtained for cubic systems.
This is achieved by using the same methods developed in
our previous publication,25 but only considering icosahedra
whose centres reside inside the segment, and only counting the

particles in icosahedra which lie inside the segment. This will
result in some partial icosahedra along the boundary edges but
is the simplest method of partitioning the simulation box and
its mesoclusters.

Further to this, since the exact location and height of the
shear bands vary slightly through time, the simulations are split
into 8 equal time windows (i.e., 400τα is split into 8× 50τα
time windows) and the segment boundaries defined for each.
When defined with the interface parameter A = 2 in Eq. (8),
most of the low/high shear segments are ≥20% of the height of
the simulation box, which can all be reasonably described with
system size dependent mesocluster size models. These system
size dependent models can become somewhat inaccurate in
describing the observed mesocluster size distributions in thin-
ner segments. A handful of the high and low shear segments
fall below this threshold, but they are infrequent enough not
to cause significant effects in the results. Generally, the high
shear segments are ≈20%−25% of the simulation box height
and the low shear segments are ≈40%−50% of the simulation
box height.

Figure 10 shows the fitted effective temperatures of the
high and low shear segments for different temperatures and
shear rates. The low shear segments have effective tem-
peratures lower than the global averages (calculated as in
Section III for the 8 time windows), and the high shear seg-
ments have significantly higher effective temperatures. This is
mirrored in the observed values of φ across these segments.

Figure 11 shows the fitted effective temperatures com-
pared to the observed φ values and the existing model for φ(T )
from Ref. 25. The data points follow the model φ(T ) with rea-
sonable accuracy. The fitted effective temperatures are higher
than what the observed φ would have predicted; however, it is
likely that the system size dependent mesocluster size models
give effective temperatures that are too high. This is evidenced
in a small number of windows where the low shear segment
has been fitted with an effective temperature that is actually
higher than the global average; suggesting a possibility that the

FIG. 10. The effective temperatures of the segments plotted against the global
effective temperatures. The low (filled) and high (unfilled) shear segments
display effective temperatures that are (respectively) below and above the
global values. Different shear rates are denoted by the shapes of the symbols:
triangle down: γ̇ = 2.5 × 10−6; square: γ̇ = 5 × 10−6; circle: γ̇ = 10−5;
diamond: γ̇ = 2.5 × 10−5; triangle right: γ̇ = 5 × 10−5; star: γ̇ = 10−4.
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FIG. 11. The fitted effective temperatures and their corresponding observed
values of φ. The model φ(T ) was formulated using quiescent data which was
only accessible in the region 1/T < 1.74. The data points of the fitted effec-
tive temperatures follow the model φ(T ) reasonably closely for all observed
effective temperatures.

models may be biased towards higher temperatures, although
quantifying this bias would prove challenging.

Using these fitted effective temperatures, we can formu-
late a very simple linear combination of the high and low shear
segments to estimate an average effective temperature, Tb

eff for
the banded system. Note that we have neglected the “inter-
faces” between the banding and non-banding regions since
they form a relatively small part of the system. Specifically,

Tb
eff =

Teff(h)L(h) + Teff(l)L(l)
L(h) + L(l)

, (9)

where L(h) and L(l) are the sizes of the high and low segments
as a proportion of the box height (e.g., 0.5 for half box height).
The results for this are shown in Fig. 12. Given the simplicity of
this linear combination and the potential combined inaccura-
cies from the system size dependent mesocluster size models,
the estimated global effective temperatures are in reasonable
agreement with the expression.

We therefore have two models describing the effective
temperature(s) of the system. Taking a global view of the
system, the effective temperature is determined by a linear

FIG. 12. The global effective temperature estimated from a simple linear
combination of high and low shear segments (Eq. (9)).

relationship with the shear rate (Eq. (3)). If shear banding is
exhibited, a local analysis shows that the system forms two dis-
tinct regions of high and low shear (determined by the local D2

values). Hence taking account of shear banding, the effective
temperatures of these regions and their relative sizes can be
used to estimate the global effective temperature of the system
(Eq. (9)). The combination of Eqs. (3) and (9) gives a com-
plete description of the mesocluster size distributions expected
for any simulation temperature and/or shear rate, including
the segment differences which would be observed in systems
exhibiting shear banding.

Before closing, we discuss the relevance of our findings
in the context of shear banding. When a system undergoes
shear banding, one expects that the bands have differing rigidi-
ties. Given that quiescent vitrification involves a change in
rigidity, it is natural to expect that some properties of the qui-
escent case may carry over to the shear banding case. This
is what we indeed find. In particular, a drop in the popula-
tion of icosahedra in the shear bands seems entirely consistent
with the idea that icosahedra are involved in the increased
rigidity of the Wahnström model. This is also consistent with
the negative correlation identified between locally weak “soft
spots” and icosahedra in a metallic glassformer68 and band-
ing behaviour.69,70 Fitting the shear bands with our popula-
tion dynamics model25 suggests that the banding regions can
be treated as if they are at a higher effective temperature.
Interestingly, other work also correlates sheared systems with
higher temperature, both in simulation71,72 and also in exper-
iment.73 Our analysis thus forms a structural connection for
these observations of the relationship between temperature and
shear.

V. SUMMARY AND DISCUSSION

In this paper, we analyzed the Wahnström binary Lennard-
Jones model under different rates of shear for a wide range
of temperatures. The system was sheared for long enough to
reach the steady state (i.e., steady stress had been achieved)
before obtaining data. In this way, we were able to access
temperatures inaccessible to quiescent systems. Additionally,
increasing the rate of shear can be shown to act like increasing
the temperature of the system. This was evidenced in the meso-
cluster size distributions. In particular, once the shear rate is
slow enough (γ̇ . 0.01/τα), the system shows no obvious
behavioural differences from their corresponding quiescent
systems.

We conclude that (i) at the level of our mesocluster model,
shearing may be regarded as equivalent to changing tempera-
ture; (ii) shear behaviour in regions poor in icosahedra provides
strong evidence that icosahedra-rich regions are more rigid.
This suggests that the formation of icosahedra may be related
to local rigidity in the Wahnström model. Such behaviour has
been noted in metallic glasses.68 Shear banding leads to two
different effective temperatures, which approximately obey a
simple linear superposition to the global effect temperature.

The sheared systems were initially fitted with an effec-
tive temperature using the mesocluster size distribution model
from Ref. 25. From this, we were able to identify an effec-
tive temperature as a function of the shear rate. For 0.56 ≤ T
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≤ 0.8, the effective temperatures are well described by a linear
function of the shear rate (Eq. (3)). This model is only relevant
in the regime where τα can be evaluated. However, even in the
low temperature simulations (T ≤ 0.5), decreasing the shear
rate resulted in decreasing the effective temperature of the
systems. In these low temperature simulations, the observed
effective temperatures were significantly colder than can be
obtained in equilibrated quiescent systems. Thus, this method
allows us to probe deeper into the energy landscape than can
be achieved with the quiescent simulation.

Many of the state points studied here exhibited shear band-
ing. These have two distinct regions; one with a low shear rate
and the other with high shear rate. The high and low shear
rate regions were identified using the non-affine deforma-
tion parameter, D2, which measures the relative movement of
neighbouring particles compared to a central one.34 Higher D2

values identify regions of high mobility (high shear rate) while
lower values identify regions of low mobility (low shear rate).
To analyze the banding, the average D2 values and average
icosahedra density in the y direction was considered. A very
strong negative correlation coefficient was found between the
values of D2 and density of icosahedra, suggesting a measur-
able difference in the mesocluster size distributions between
the high shear and low shear regions. We used the D2 values
to construct boundaries for the high and low shear regions,
thus allowing us to partition the simulation box into segments
according to their local shearing behavior. Mesoclusters inside
each of these segments were identified, and the size distribu-
tions were calculated for each high and low shear segment
across all banded systems. In all cases, the low shear regions
had significantly lower effective temperatures than the high
shear regions.

Using a linear combination of the effective tempera-
tures of the high and low shear segments, we could estimate
the global effective temperature with reasonable accuracy
(Eq. (9)). This result means that, given we know the global
effective temperature (which can be predicted from the linear
relationship between the shear rate and effective temperature
Eq. (3)) and the approximate size of the shear bands, we can
estimate the effective temperatures of the shear bands and
vice versa.

Our work opens a perspective of using a shear to probe
deep in the energy landscape, beyond the regime accessible to
the conventional simulation. This is made under the assump-
tion that the properties of the mesocluster model (icosahedra
population and mesocluster properties) accurately represent
the system at low temperature.25 In the future, this method
can be generalised to system with other LFS such as the
Kob-Andersen model14,74 and hard spheres19 and indeed to
practical materials with well-defined LFS such as metallic
glasses.75
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