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Among the key insights into the glass transition has been the identification of a nonequilibrium phase
transition in trajectory space which reveals phase coexistence between the normal supercooled liquid
(active phase) and a glassy state (inactive phase). Here, we present evidence that such a transition occurs in
experiments. In colloidal hard spheres, we find a non-Gaussian distribution of trajectories leaning towards
those rich in locally favored structures (LFSs), associated with the emergence of slow dynamics. This we
interpret as evidence for a nonequilibrium transition to an inactive LFS-rich phase. Reweighting trajectories
reveals a first-order phase transition in trajectory space between a normal liquid and a LFS-rich phase. We
also find evidence for a purely dynamical transition in trajectory space.
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Introduction.—The glass transition is one of the long-
standing challenges in condensed matter. In particular, one
seeks to understand how solidity emerges with little
apparent change in structure [1]. A central aspect for the
understanding of supercooled liquids is dynamic hetero-
geneity: on suitable observation time scales, local regions
appear liquidlike (active) or solidlike (inactive) [2], sug-
gesting that any successful explanation must include this
phenomenon. A variety of theories have been proposed;
indeed, whether the glass transition has a thermodynamic
(implying structural) or dynamical origin remains unclear
[1]. The former may relate to a transition to an ideal glass
state at finite temperature with minimal configurational
entropy and has recently received some support from
numerical and theoretical work [3–5].
The dynamical interpretation posits that the glass tran-

sition is a dynamical phenomenon where local relaxation
events in the form of active regions couple to one another [6].
This dynamic facilitation approach employs the language of
phase transitions in order to explain the emergence of
solidity, but with a key departure from equilibrium thermo-
dynamics: here, the phase transitions occur in trajectory
space [7–9] instead of configurational space. In such
transitions, trajectories of small systems, with a duration
of a few structural relaxation times, exhibit a transition
between active and inactive states under a biasing field,
which in simulation is compatible with the scaling expected
for a first-order transition [8,10]. It is suggested that the
dynamical heterogeneity exhibited by glass-forming liquids
is the hallmark of such a dynamical phase transition [6].
An extension of this trajectory space approach concerns

structural-dynamical transitions, which may provide a link

between the thermodynamic (structure-based) and dynami-
cal transition approaches [11,12]. Here, one exploits the fact
that, while changes in structure upon supercooling in liquids
are not dramatic, nor are they absent [13]. In fact, they
contribute to the emergence of strongly heterogeneous
dynamical states. For example, for a variety of model glass
formers, geometric motifs known as locally favored struc-
tures (LFSs) associated with slow dynamics have been
identified [14].
This suggests that the dynamical phase transition in

trajectory space may have a structural element, with the
inactive phase having exceptionally high concentrations of
LFSs with respect to the active phase. This has been shown
to be the case [11]. Moreover, selecting trajectories rich in
LFSs (rather than being dynamically inactive) leads to a
similar nonequilibrium phase transition between a glassy
LFS-rich phase and the normal (LFS-poor) supercooled
liquid. This transition was found by biasing the population
of LFSs along the length of a trajectory. The effect of the
bias amounts to a dynamical chemical potential for the
time-averaged LFS population favoring the sampling of
trajectories that are rich or poor in structure. To realize the
nonequilibrium transition, in practice a field termed μ is
applied which uses a Boltzmann weight to sample trajec-
tories based on their time-averaged LFS population. This
demonstrates coupling between structure and dynamics.
Now, to date, dynamical transitions have been carried out

under such biasing fields, which are, of course, absent in
experiments. However, even in equilibrium, evidence of
such transitions can be found by considering the so-called
large deviations of dynamical observables, which serve as
order parameters for the transition [15]. Quantities such as
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the mobility [8] and the time-integrated population of LFSs
[11] exhibit non-Gaussian probability distributions with
enhanced tails corresponding to exceptionally large (or
small) values of the observable. Nonconvexity of these
distributions indicates a nonequilibrium phase transition
which is revealed by reweighting these distributions
(equivalent to applying the dynamical chemical potential)
in the form of two coexisting peaks in the distribution of the
observable of interest averaged along the trajectory. In
experiments at equilibrium, a correct sampling of the non-
Gaussian tails thus indicates the transition.
Particle-resolved studies of colloids [16] provide data

similar to that of a computer simulation, and they have been
used to show structural change approaching dynamical
arrest [17–19] and that shear banding may be interpreted as
a nonequilibrium transition [20]. Moreover, simulation data
show behavior consistent with dynamical facilitation [21].
Our aim here is to seek an experimental signature of the
dynamical phase transitions in time-averaged LFS popu-
lations and mobility, which we confirm with computer
simulations. To do this, we apply the μ field as postpro-
cessing to the experimentally determined non-Gaussian
distributions. We back up our results with simulations in
two ways. First, we employ biased sampling using small
systems similar to that used in Ref. [11]. We then use larger,
unbiased simulations which we subsample to obtain tra-
jectories corresponding to a small system, and we show that
the transition is accessible to experiments.
Experiment.—We used poly(methyl methacrylate) col-

loids fluorescently labeled with a mean diameter of σ ¼
1.99 μm and a polydispersity of 8%. The particles were
suspended in a density matched solvent to which salt was
added to screen electrostatic interactions. We use confocal
microscopy to track the particle coordinates [22]. Because
of particle tracking limitations, errors are introduced in the
coordinate data [23,24]. To determine the impact of the
errors, we compared our experiment with a simulation, as
shown in Fig. 1(b). Here, we see that applying a Gaussian
distributed error with the standard deviation 0.05σ to the
simulation data leads to results comparable to the experi-
ment. Further details may be found in the Supplemental
Material (SM) [25].
Simulation and analysis.—We employ the DYNAMO

event driven molecular dynamics package [33]. We consider
a hard sphere system of five equimolar species of identical
mass and different diameters: f0.888; 0.9573; 1.0; 1.043;
1.112g. This system also has a polydispersity of 8%. We
fix the system size at N ¼ 10 976. Time scales are scaled to
the Brownian time of the experimental system. Further
details can be found in the literature [14,34]. For the biased
simulations, we follow the methods used previously
[8,10,11], with N ¼ 125 at ϕ ¼ 0.56. The trajectory length
tobs is chosen to be significantly greater than the relaxation
time tobs ¼ 200≃ 10τα. Further details are discussed below
and in the SM [25].

To analyze the local structure, we identify the bond
network using the Voronoi construction with a maximum
bond length of 1.4σ. We then use the topological cluster
classification [35] (see the SM [25]) to identify the locally
favored structure for the hard spheres, the ten-membered
defective icosahedron (an icosahedron missing three par-
ticles) with C3v symmetry depicted in Fig. 1(b) [36].
To determine the structural relaxation time τα, we

calculate the intermediate scattering function reading
FðtÞ ¼ 1=Nhexpfik · ½rðtþ t0Þ − rðt0Þ�gi, where jkj ¼
2π is a wave vector taken close to the peak of the static
structure factor, r is the coordinate, and the angle brackets
indicate the averaging over all particles. We do not
discriminate between particles of different size here. The
structural relaxation time is then obtained by fitting a
stretched exponential FðtÞ ¼ c exp ½−ðt=ταÞb�, as shown
for the experimental data in the SM [25]. We compared
experimental results with simulation through the Angell
plot [Fig. 1(a)] to obtain the effective volume fraction.
Overall system behavior.—In Fig. 1(a), we show the

dynamical behavior of the system, where we plot the
structural relaxation timeagainst the effectivevolume fraction
for both experiments and simulations. Intermediate scattering
functions are given in the SM [25]. We see that both
experiments and simulations are well described by a
Vogel-Fulcher-Tammann (VFT) fit τα ∝ exp½A=ðϕ0 − ϕÞ�,
in whichϕ0 ¼ 0.606 andA ¼ 0.24 parametrizes the fragility
as shown in Fig. 1(a), in line with previous work [14,37]. In
Fig. 1(b), we see that, upon increasing ϕ, the population of
locally favored structures [14] increases in both the experi-
ments and the simulation. Once the errors in coordinate
tracking in the experiments are accounted for, we find
quantitative agreement with the simulation.
Evidence for a structural-dynamical phase transition.—

Thus far, we have shown that the experimental hard sphere
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FIG. 1. Dynamical behavior and structural changes upon
supercooling hard spheres. (a) Angell plot of structural relaxation
time τα as a function of the volume fraction. The dashed line is the
VFT fit described in the text. (b) The fraction of particles
identified in defective icosahedra locally favored structures
nLFS increases upon supercooling. The simulation data with
errors added to the coordinates (the red symbols) show quanti-
tative agreement with the experiment. Unfilled symbols indicate a
volume fraction corresponding to the LFS population in a LFS-
rich phase. The grey lines are fits to nLFSðϕÞ (see the SM [25]).
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system undergoes structural change approaching dynami-
cal arrest similar to the simulations [14]. Our strategy to
provide evidence for a dynamical phase transition is as
follows. First, we show that the hard sphere system
undergoes the structural-dynamical phase transition pre-
viously identified in the binary Lennard-Jones system [11]
in a small system of N ¼ 125 particles. We then proceed to
show that the same behavior, in the sense of a non-Gaussian
probability distribution of the time-integrated fraction of
particles in LFSs, nLFS, is found in trajectories of N ¼ 100
particles which have been subsampled from a bulk simu-
lated system of Ntot ¼ 10976. This sets us up to perform a
similar analysis on the experimental data. The larger than
expected number of trajectories with a high population of
LFSs is then evidence for a dynamical phase transition in
the experimental system. We then apply a bias through the
dynamical chemical potential μ by postprocessing unbiased
simulated and experimental data to reveal coexisting
populations of normal liquid and LFS-rich phases.
Biased simulations.—We compute the probability dis-

tribution for the population of LFSs along trajectories
which are shown by the filled symbols in Fig. 2(c).
Here, ϕ ¼ 0.56. We observe a peak at the equilibrium
value nLFS ≃ 0.37, and a broad tail for high populations of
LFSs that differs significantly from the Gaussian distribu-
tion expected for normal liquids which are not supercooled
or supersaturated. To bias the system towards phase
coexistence between the normal liquid and the LFS rich
phase, we promote those high population trajectories by
reweighting the μ ¼ 0 histogram:

PμðnLFSÞ ∝ PðnLFSÞ exp½μnLFSNðK þ 1Þ�; ð1Þ

where K þ 1 is the number of frames in the trajectories.
From the double-peaked distribution in Fig. 2(c), we see
that applying the μ field and increasing it above μ� ¼
0.0055 causes the system to undergo a transition from a low

population of LFSs (nLFS ≃ 0.37) to a high population
(nLFS > 0.7). By reweighting with μ� ¼ 0.0055, we see
that the tail rises to the same height of the first peak,
indicating that, at this value of μ, we have coexistence of
the two phases in trajectory space. In other words, we have
shown that hard spheres also exhibit the previously found
dynamical phase transition [11].
Bulk simulations.—Having shown that the hard spheres

undergo a structural-dynamical phase transition, we consider
bulk simulations. Subsampled data for trajectories of N ¼
100 particles and length 5τα are shown in Fig. 2(b) for
ϕ ¼ 0.575. We subsample the trajectories as shown sche-
matically in Fig. 3. In simulation, the closestN − 1 particles
to a given particle define the trajectory. We harvest trajecto-
ries of length tobs ¼ K△t, where K þ 1 is the total configu-
ration when using nLFS ¼ N =½NðK þ 1Þ�,N is the number

of particles in the LFS, N ¼ P
N
k¼0

P
K
i¼0 h

ðLFSÞ
k ðtiÞ. Here,

hðLFSÞk ðtiÞ ¼ 1 if the particle is a member of a LFS and 0
otherwise. Further details are shown in the SM [25]. We see
that the trajectory distribution is again non-Gaussian and find
a shoulder corresponding to LFS-rich trajectories, like the
unbiased data in Fig. 2(c) and that shown in Ref. [11].
Analyzing unbiased trajectory data.—The non-Gaussian

behavior in Figs. 2(b) and 2(c) with its characteristic “fat
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FIG. 2. Probability distributions of populations (the filled symbols) of defective icosahedra in trajectories for the three systems we
consider. Also shown is the postprocessed, reweighted data (the open symbols) demonstrating coexistence between normal liquid and
LFS-rich phases in each case. (a) Experiment. Subsampled, volume fraction ϕ ¼ 0.58, trajectory length tobs ¼ 0.97τα. Postprocessed
data with μ� ¼ 0.0045. (b) Bulk simulation data for Ntot ¼ 10960 particles. Subsampled, volume fraction ϕ ¼ 0.575, tobs ¼ 5τα.
Postprocessed data with μ� ¼ 0.0048. (c) Biased simulation data forN ¼ 125 particles. Full system with periodic boundaries, ϕ ¼ 0.56,
tobs ¼ 10τα. Postprocessed data with μ� ¼ 0.0055. (d) Confirming the transition is dynamical. Experimental probability distribution of
defective icosahedra obtained from configurations (rather than trajectories). (e) Experiment. DDM data to show dynamical transition
subsampled, ϕ ¼ 0.58, tobs ¼ 1τα. In all panels, grey lines indicate Gaussian distributions and thus reveal large deviations [and the
absence thereof in (d)]. Except where indicated, the error bars are smaller than the symbols.

FIG. 3. Illustration of the subsampling of trajectories. Purple
particles are in defective icosahedra LFSs, while non-LFS
particles are rendered transparent. In the experiments, we define
the trajectories by considering the fraction of particles in LFSs in
a sphere which contains ≈100 particles (the yellow tinted sphere).
Here, nτα is the length of the trajectory.
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tail” demonstrates the dynamical phase transition. Here, we
go further to reveal phase coexistence by reweighting the
trajectory distributions. To do so, we apply the dynamical
chemical potential μ via Eq. (1). We see in Fig. 2(b) that
applying the μ field leads to a distribution indicating the
same two coexisting phases, identified under the biased
simulations in Fig. 2(b), one LFS rich and one LFS poor
(the normal liquid). Crucially, because we have subsampled
from a large, unbiased system, we demonstrate that it is
possible to identify the nonequlibrium phase transition in
experimental data, which is itself, of course, unbiased.
Nonequilibrium phase transition in experiments.—We

now proceed to demonstrate the nonequilibrium transition
in experiments. Our strategy follows that applied to the
large unbiased simulations above. Specifically, we sub-
sampled the tracked coordinates from the experiment for
trajectories of length 0.97τα. For the experiments, trajecto-
ries are defined by the evolution of the N − 1 closest
particles assigned at the start of the trajectory; see Fig. 3
and the SM [25]. In our case R ≈ 2.8σ, which corresponds
to ≈100 particles around a randomly chosen center particle.
In Fig. 2(a) we plot the LFS trajectory distributions. As

before, we see the characteristic non-Gaussian distribution
of trajectories, indicating a nonequilibrium phase transi-
tion. We see behavior similar to that of the simulations, in
that there is a fat tail of LFS-rich trajectories, revealing the
inactive phase. Because of the particle tracking errors, the
distribution has a lower mean in Fig. 2(a); however, its
relative width is comparable to that in Figs. 2(b) and 2(c).
Significantly, we expect (as shown previously in simu-

lation [11]) that, when simply sampling configurations
rather than trajectories, there should be a Gaussian dis-
tribution. That is to say, the phase transition has a
dynamical character (rather than a conventional thermo-
dynamic phase transition, which would be revealed by
coordinate data only). This we find, as shown in Fig. 2(d).
Thus, we provide evidence that the transition is trajectory
based, i.e., that the dynamics are intrinsic to the transition,
and thus it has a nonequilibrium nature. Another important
check we need to make is that the transition is related to the
particular LFS. In the SM [25], we show that trajectory
sampling with a structure distinct from the LFS does not
lead to a dynamical transition. Furthermore, we show that,
by controlling the dynamical chemical potential μ, we can
select either phase from the experimental data in Fig. 4. In
this way it is possible, in an experiment, to identify
configurations of the inactive phase.
In Fig. 1(b) (the unfilled symbols), we estimate the

volume fraction that the LFS-rich phase corresponds to as
0.59. To do so, we determine the LFS population as a
function of volume fraction nLFSðϕÞ (see the SM [25]), as
indicated by the grey lines in Fig. 1(b). Under the VFT fit in
Fig. 1(a), this corresponds to a structural relaxation time
300 times that of the system from which the trajectories are
sampled, ϕ ¼ 0.58 for the experiments and some 1.8 × 104

in the case of the biased simulations, which are sampled at
ϕ ¼ 0.56. In the future, with real-time data processing and
using optical tweezers [38], it may even be possible to
“freeze” such an inactive configuration and further probe its
behavior—for example, by determining its rheological
properties.
Finally, we consider the purely dynamical transition to a

state of trajectories with very slow dynamics. This is shown
in Fig. 2(e). Now the measurements of the displacements
necessary are rather hampered by the particle tracking
errors. We therefore determine the mobility with confocal
differential dynamic microscopy (DDM) [39,40] as
described in the SM [25]. We see that there is a fat tail
for low mobility, indicating a dynamical transition. This is
also found in the simulation, for which details are presented
in the SM [25].
Conclusions.—We have demonstrated the existence of a

dynamical phase transition in trajectory space in experi-
ments between a normal liquid and a LFS-rich phase. This
opens a perspective as to the range of dynamical phase
transitions that might be identified by this kind of analysis.
Here, we have focused mainly on structure (which is easier
to identify in our experiments), but we have also demon-
strated the purely dynamical phase transition. We have
previously shown that there appears to be some overlap
between the configuration space these transitions sample
[11]. We see no reason to suppose that the current hard
spheres should be significantly different. While some work
has suggested that the hard sphere LFSs might have a
hexagonal symmetry [41], no evidence of such order has
been seen in a number of other studies, including this
[34,36,42]. Finally, we find that trajectory biasing based on
LFSs can produce configurations of exceptionally low
configurational entropy, suggesting a link between LFSs
and configurational entropy [12].
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