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We study the joint variability of structural information in a hard sphere fluid biased to avoid
crystallisation and form five-fold symmetric geometric motifs. We show that the structural covari-
ance matrix approach, originally proposed for on-lattice liquids [P. Ronceray and P. Harrowell,
J. Stat. Mech.: Theory Exp. 2016(8), 084002], can be meaningfully employed to understand structural
relationships between different motifs and can predict, within the linear-response regime, structural
changes related to motifs distinct from that used to bias the system. Published by AIP Publishing.
https://doi.org/10.1063/1.5024462

I. INTRODUCTION

Short-range local order is a distinctive feature of the liquid
state. In models of simple liquids such as the Lennard-Jones
liquid or the hard sphere fluid, local structure has been stud-
ied via the measurement of pair correlation functions (which
define a characteristic correlation length)1 or with higher order
correlations, such as rings of particles and recurrent geometric
motifs, since the early times of the theory of liquids, with the
pioneering work of Bernal2,3 and Finney4,5 in “ball-bearing”
models.

Since then, more sophisticated probing techniques have
been developed to characterise the local structure of dis-
ordered systems: projection of the nearest neighbours onto
spherical harmonics,6,7 the statistics of Voronoi polyhedra
and their facets,8 the analysis of common neighbours,9 the
match of local motifs with minimum energy clusters,10 and
persistence homology of rings of particles11 are just a few
examples.

The idea underpinning these analyses is that the knowl-
edge of the degree of local order may shed light on interesting
dynamical and thermodynamical properties of disordered sys-
tems in general and of liquids in particular. These include pos-
sible signatures of precursors to crystallisation in metastable
liquids12,13 as well as the eventual coupling between struc-
tural and dynamical heterogeneities in supercooled liquids
and glasses (for a review on structure in dynamically arrested
systems, see Ref. 14).

A major issue in this approach is the fact that different
diagnostic and analysis tools of local structural properties may
lead to different conclusions on the role of local structure in liq-
uids. For example, the role of crystalline and icosahedral order
in supercooled liquids has been extensively debated4,8,15–18

and the metrics used to determine each of those orders play
a role in the interpretation of the results. Understanding how

a)Electronic mail: benjamin.carter@bristol.ac.uk

different types of local structural motifs correlate would per-
mit us to systematically compare different metrics and thus
open the way toward a unified quantitative framework for local
liquid order.

Here we consider the problem of the classification of local
order in a canonical liquid from a simple statistical point of
view. Recent work on a toy model of a lattice liquid with a
purely structural energy landscape, the favoured local struc-
ture model,19 has demonstrated the importance of correlations
between different structural geometric motifs present in the
liquid. Indeed, the statistics of high-temperature structural
fluctuations provides key information on the liquid entropy,20

while their correlations provide quantitative metrics for the
stability/instability of the liquid toward crystal formation,
being good predictors of crystallisation times and surface
tensions.21,22 Inspired by these results on a highly idealised
system, we study here the structural statistics in the hard sphere
fluid at high packing fraction, a much more realistic liquid
model. Following closely the approach proposed by Ronceray
and Harrowell,21 we measure structural covariances and show
how they encode, at the same time, geometric information on
the classification itself and physical information on the propen-
sity of the system to form crystalline or five-fold symmetric
structures.

The article is organised as follows: in Sec. II, we introduce
the studied model and the structural classification of reference;
in Sec. III, we discuss the structural covariance formalism and
its main results in the case of hard spheres; in Sec. IV, we
demonstrate that the covariance framework allows us to predict
quantitatively the parameter dependence of the liquid struc-
ture; and in Sec. V, we summarise our findings and propose
further directions of research.

II. HARD SPHERES WITH STRUCTURAL BIAS

In the hard-sphere liquid, five-fold symmetry plays
an important role, frustrating the formation of crystalline
order.23–25 The degree of five-fold frustration is often
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FIG. 1. Topological cluster classification. (Left) Structural motifs related to three-fold symmetric (5A) or four-fold symmetric (6A and sp4b) local order. The
sp4b unit is smaller than the octahedron, and three small motifs are derived from it; its subgroup is highlighted by a dashed line. Rings are represented by
colored sticks connecting grey particles, spindle particles are in yellow, and additional particles are in red, as in Ref. 10. (Right) Structural motifs related to the
pentagonal (7A or sp5b) local order. The sp5b unit is smaller than the pentagonal bi-pyramid, and only one motif is derived from it; its subgroup is highlighted
by a dashed line. Notice the presence of multiple interlaced pentagonal rings in the larger structures such as 10B or 11E.

quantified in terms of the number of five-fold symmetric struc-
tures, identified through the pentagonal bipyramid, a geomet-
rical arrangement which is formed by a bonded spindle pair of
particles sharing exactly five neighbours.

In order to study the local structure of the system, includ-
ing five-fold symmetry, we employ the Topological Cluster
Classification (TCC).10 This algorithm has been successfully
used in the past to study the structure of simple liquids,26

gels,27–29 glasses,30,31 and athermal packings.32 It identifies
a total of 33 structures based on minimum energy clusters
of elementary pair potentials, such as the Lennard-Jones and
Morse liquids. Its labelling of different structures is inherited
from the labelling of minimum energy clusters of simple liq-
uids (with Lennard-Jones, Morse, or Dzugutov interactions)
in the Cambridge Cluster Database.33 Cluster labels are typ-
ically composed of a number and a letter: the former refers
to the number of particles in the motif, the latter indicates the
nature of the potential the motif is a minimum of (letters from
A to F correspond to the Morse potential with increasing range,
Z stands for the Dzugutov potential,34 K and W stand for par-
ticular forms of the Lennard-Jones potential, and X stands for
a BCC crystalline arrangement).35

In Fig. 1, we illustrate the relationship between the sev-
eral structures defined in the TCC. We differentiate the several
families of structures present in the classification: three-fold
(tetrahedral), four-fold, and five-fold symmetric structures of
different numbers of particles are defined. In particular, the
pentagonal bipyramid is termed “7A.” Hence, we define the
total number of pentagonal bipyramids as N7A. In this classifi-
cation, small structures can be part of larger structures. Such a
multiple counting contributes to the total number N i of struc-
tures of a given type i. In contrast to previous studies,10 N7A

does not correspond to the number of particles detected in
pentagonal bipyramids, but to the actual number of (possibly
overlapping) bipyramids detected in the liquid, and similarly

for all other structures i. The relation between the number of
bipyramids and the probability to find a particle in a bipyramid
is nontrivial since particles can be part of several overlapping
bipyramids.

In Ref. 25, five-fold symmetry in hard spheres has
been studied through the addition of a many-body energy
term Hfivefold = εN7A to the Hamiltonian of the system,
sampling via Monte Carlo an extended two-dimensional
phase diagram in the packing fraction φ and bias energy
ε (with unit temperature); see Fig. 2. This model exhibits
a rich phase behaviour: biasing the system to more nega-
tive/positive values of ε pushes the fluid-solid phase transition
to higher/lower packing fraction; at strong enough biases,
the system spontaneously nucleates a quasi-crystalline phase
rich in five-fold symmetric icosahedra. We refer the reader

FIG. 2. Phase diagram of biased hard spheres at high packing fraction. We
explore several state points: at zero bias (red squares) with packing fractions
φ ∈ [0.52, 0.56] and t fixed packing fraction and variable bias, φ = 0.52, ε
∈ [�0.10, 0.03] (green circles) and φ = 0.54, ε ∈ [�0.20, 0] (blue crosses).
Phase boundaries are reproduced from Ref. 25.
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to Ref. 25 for a more complete discussion of the phase
behaviour of the 7A-biased hard-sphere fluid.

In the present article, we extend this work and re-examine
runs of N = 2048 hard spheres in the isothermal-isochoric
ensemble for different values of φ, with a specific interest in the
influence of the five-fold bias ε on the structure of the liquid.
This parameter fully determines the Hamiltonian of the system,
as the hard-sphere interaction has no other contribution than
forbidding configurations with overlaps. This model is thus
entirely specified by a simple local energy landscape, making
it ideally suitable for a first study of structural covariance in
off-lattice systems.

III. STRUCTURAL COVARIANCE FORMALISM

At any given time, the number N i(t) of structures of type i
in the system will exhibit some deviation to its mean, reflecting
the randomness of the configurations. The keystone of our
statistical analysis of liquid structure is the covariance matrix
Ci,j between these numbers N i and N j of structures of types
i and j, which reflects the correlations between these random
variables. We now explain how we compute this matrix, before
discussing its structure.

We consider Monte Carlo simulations of biased and unbi-
ased hard sphere fluids analysed with the topological clus-
ter classification. We retrieve a time series of 1000 Monte
Carlo sweeps (MCs) of the number of particles N i(t) or ni(t)
= N i(t)/N (the intensive concentration of structures of type i)
for all the structures defined in the classification, an example
of which is pictured in Fig. 3. We note that, by definition, an
individual particle may participate in more than a single motif.
For example, it may be a constituent of two or more distinct
pentagonal bipyramids. This is essential for the identification
of larger structures (for instance, the 10B structure) and implies
that the concentration ni(t) can in principle exceed unity for
some motifs.

Comparing the evolution of, for example, the 6Z and
6A structures with the 7A structure, we notice that while the
former presents a very similar pattern to the pentagonal bipyra-
mid (n6Z concentration increases as n7A increases), the other
shows the opposite behaviour, suggesting that some structures

FIG. 3. Time evolution in Monte Carlo sweeps (MCs) of the concentration ni
for the four-fold symmetric 6A, three-fold symmetric 7A, and five-fold sym-
metric 7A. Concentration ni is rescaled and shifted to more visually highlight
time correlations (and anticorrelations) between the different time signals.

FIG. 4. Average concentration of detected structures, 〈ni〉, in the system as
a function of the bias ε toward the pentagonal bipyramid (7A) structure. The
packing fraction is constant at φ = 0.54.

are positively, while others are negatively, correlated to the
five-fold symmetric structure. The time average 〈ni〉 = 〈N i〉/N
for a selection of structures at packing fraction φ = 0.54 is
plotted in Fig. 4 and shows that the concentrations of differ-
ent structures differ of several orders of magnitude and have
very different responses according to the change in the bias
ε. A more complete picture for all the motifs with a significa-
tive average concentration 〈ni〉 > 10�4 is presented in Fig. 5.
Unsurprisingly, small structures typically correspond to large
concentrations, while the opposite is true, in general, for struc-
tures composed of many particles. The largest structures such
as the FCC, the HCP, or 13A (i.e., icosahedral) motifs in the
TCC comprise 13 particles and all have relatively small con-
centrations ni ∼ 10�3. For very negative values of the bias ε,
7A structures are strongly favoured. This is clearly accompa-
nied by the increase in the number of structures composed of
7A motifs such as 10B (termed defective icosahedron) or 13A
(the icosahedron) (see Fig. 1 for three-dimensional render-
ing). Correspondingly, the concentrations of structures related
to four-fold symmetry, such as FCC or 11F, steadily drop at
negative bias values.

To obtain the covariances, we directly evaluate cross cor-
relations of the time-series at specific values of the packing
fraction φ and bias ε. For any pair of structures i, j in the
classification, we define the matrix element

FIG. 5. Effect of negative biases on the time-averaged concentrations 〈ni〉 at
packing fractionφ = 0.54 for structures in the topological cluster classification
with 〈ni〉 > 10�4. Motifs that are agonist to 7A (shaded area) show an increase
in concentration, while the opposite occurs for the antagonist family of
structures.
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Ci,j(φ, ε) = NCov(ni(φ, ε), nj(φ, ε)) (1)

=
N

tmax − 1

tmax∑
k=1

(ni(k) − 〈ni〉)(nj(k) − 〈nj〉). (2)

With such a definition, the covariance matrix is an intensive
property of the system. It should in principle depend on the
packing fraction φ and the bias ε. However, as we shall see in
Sec. IV, the knowledge of the covariance matrix in unbiased
conditions C0(φ) = C(φ, ε = 0) is sufficient to quantitatively
predict changes in the structural properties of the liquid.

A. Structure of the covariance matrices

We now discuss the properties of the covariance matrix
C(φ, ε), obtained using Eq. (2) over the set of K = 33

structures defined in the topological cluster classification that
are composed of at least 5 particles. These structures include,
for instance, the bi-tetrahedron (5A), the octahedron (6A),
the 6-particle free energy minimum for six colloids with
depleted mediated attractions (6Z), the pentagonal bipyramid
(7A), and much larger structural motifs such as the defective
icosahedron (10B), icosahedron (13A), and crystalline motifs
related to FCC (the 13-particle FCC motif) or HCP order (the
13-particle HCP cluster or the 11-particle 11F cluster). We
show in Fig. 6 four instances of the covariance matrix for dif-
ferent values of the packing fraction φ and the bias ε. These
structures are sorted according to increasing covariance with
the 7A structure for a reference case (φ = 0.54, ε = 0).

While there are some slight variations in the value
of covariances, the overall structure of these matrices is

FIG. 6. Four examples of covariance matrices for different values of the bias ε and packing fraction φ: (a) ε = 0, φ = 0.52; (b) ε = 0, φ = 0.54; (c) ε = �0.05,
φ = 0.52; (d) ε = �0.05, φ = 0.54. Very negative matrix elements are in blue, while very positive matrix elements are in yellow. Structures are sorted according
to the ascending order of their respective covariance with the pentagonal bipyramid 7A at an unbiased fixed state point φ = 0.54, ε = 0.0. Notice the logarithmic
color scale.
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essentially independent of the values of ε and φ. A block struc-
ture with three groups of structures emerges: the left and right
part sets of structures exhibit strong positive correlation within
each group and negative correlation to the opposite group,
while the central part is a “no-man’s land” with essentially
zero covariances to all structures, including themselves. The
rightmost group of structures contains 7A and all structures
that correlate positively to it. Employing the language of Ron-
ceray and Harrowell,22 we term the structures j with C7A,j >
0 agonist to the pentagonal bipyramid 7A while those in the
leftmost group, with C7A,j < 0, are antagonist to 7A.

Going into further details, we observe that the largest
covariances with 7A are C7A,6Z and C7A,8B. The 8B structure is
directly derived from the 7A bipyramid and has larger concen-
trations for combinatorial reasons (it corresponds to a 7A motif
with an additional particle neighboring one of the two spindle
particles; see Fig. 1). The fact that the tetrahedral structure 6Z
is a strong agonist is more surprising, as it does not contain
any five-fold motif; we can rationalize its large magnitude by
observing that it has an entropic advantage compared to, for
example, the octahedron (6A).36,37 The positive correlations
revealed by the covariance analysis indicate that this structure
overlaps well with 7A. These two examples illustrate a feature
of the agonist (C7A,j > 0) family: its members are either small
structures with elementary tetrahedral order (5A, 6Z, 7K) or
larger structures containing pentagonal rings (10B, 11C, 11E,
12B, 12D, and obviously 7A itself). This fact demonstrates
that the covariance formalism is capable of detecting structural
relationships between arbitrary motifs.

Interestingly, the family of antagonist structures
(C7A,j < 0) displays positive mutual covariances Cij > 0: i,
j ∈ {antagonist} so that the top-left corner of the covariance
matrix contains positive entries. Again, we can identify in the
TCC definitions the geometric origin of these positive cross
correlations: antagonist structures include the octahedron (6A),
combinations of 6A such as 9K, structures with pairs of square
rings such as 9X and 9A, or directly sections of crystalline
cells such as the 11E, 11F, and 12E motifs and finally the HCP
and FCC structures. This indicates that, within the topologi-
cal cluster classification, most of the antagonists to five-fold
symmetry are of crystalline nature. The notable exception is
provided by the 8A cluster (composed of much distorted pen-
tagonal rings, strongly correlated with the 6Z tetrahedra and
the 6A octahedron) and the 13B cluster (composed of two well
aligned 7A clusters and hence mismatching both the crystalline
and icosahedral order).

We note that the while both the triangular bipyramid 5A
and the octahedron 6A are originally in the minimal energy
structures of the HCP crystal in the case of other simple liq-
uids such as the Lennard-Jones model,10 here they appear to
play two different roles, the former correlating well with the
emergence of pentagonal rings, while the latter anticorrelates
with it, promoting crystalline order instead.

Finally, a no-man’s land of structures of effectively zero
covariance separates the two families of agonist and antag-
onist structures. It includes structures such as 10W or 12K
which have been defined in the TCC from minimum energy
clusters of Lennard-Jones binary mixtures popular in the litera-
ture of the glass transition (Wahnström38 and Kob-Andersen,39

respectively). The covariances for such clusters are null simply
because the concentrations n10W and n12K are close to zero in
the hard sphere liquid.

B. Dependence on packing fraction and bias

As the packing fraction or the bias varies, we move into
different regions of the phase diagram in Fig. 2. Taking the high
packing fraction unbiased point φ = 0.54, ε = 0 (a metastable
overcompressed liquid before nucleation occurs), we show in
Fig. 6 that the overall structure of the covariance matrix is
broadly unchanged as we either reduce the packing fraction
or bias the system to more negative values of ε, suppressing
crystallization. We observe that, at the lower packing fraction,
the antagonist family is restricted to a smaller number of struc-
tures, as large crystalline clusters such as 11F, FCC, or 12E
present small covariances, due to the smaller concentrations
of n11F , nFCC , and n12E , respectively.

In Fig. 7, we study the instructive case of the defective
icosahedron (10B) structure and its covariances with notable
members of the agonist and antagonist families. This is an
agonist structure to five-fold symmetry, as it is composed of
three overlapping 7A motifs. The average concentration of
this motif increases both as the packing fraction is increased
and as the bias is more negative (see, for instance, Fig. 4).
It is an important structure in hard sphere glasses as it domi-
nates the free energy landscape in the metastable liquid branch
at high densities.18,40 In Fig. 7(a), we observe that increas-
ing the packing fraction at zero bias leads to an increase in
the magnitude of the covariance coefficients, which become
more negative with the antagonist structures FCC, 6A, 11F,
and 9A and more positive with other agonist structures such
as 7A, 6Z, and the icosahedron 13A. This is an immedi-
ate consequence of the increase in the concentration of 10B
at higher volume fractions compared to other structures; see
Fig. 5.

If we consider the dependence on the bias, Fig. 7(b), we
observe an analogous behaviour at constant packing fraction
φ = 0.54. We also note that covariances with rare structures,
such as the FCC crystalline motif, are very small and may flip
sign with varying packing fraction/bias. This is the indication

FIG. 7. Example of the (a) packing fraction and (b) bias dependence of the
covariance values between the agonist structure 10B and a selection of agonist
and antagonist structures. In (a), the bias is ε = 0, and in (b) the packing fraction
is φ = 0.54.



204511-6 Carter et al. J. Chem. Phys. 148, 204511 (2018)

that more statistics (i.e., longer time series) are needed to more
accurately estimate these covariances.

IV. LINEAR-RESPONSE PREDICTIONS

The knowledge of the covariance matrix does not only
provide insight on the geometrical relationship between struc-
tures, but it also allows us to make quantitative predictions
on the parameter dependence of the liquid structure. Indeed,
we can apply to our system the fluctuation-response relation
proposed by Ronceray and Harrowell in Refs. 21 and 22 for
on-lattice models, which reads

〈ni(ε)〉 = 〈n0
i 〉 −

∑
structures j

Ci,jεj, +O(ε2), (3)

where εj is the vector of energy biases associated with each
structure, i, such that the Hamiltonian is H = N

∑
i niεi. The

derivation remains correct in our case, where the only nonzero
bias is for the pentagonal bipyramid i = 7A. This results in a
simple expression

〈ni(φ, ε)〉 = 〈n0
i (φ)〉 − εC0

i,7A + O(ε2), (4)

where n0
i (φ) is the concentration of structure i for the unbiased

system at packing fraction φ and C0
7A,i is the covariance matrix

element between i and 7A at packing fraction φ.
Equation (4) provides an exact prediction for the first-

order dependence of the structural composition of the liquid
on the applied structural bias. We demonstrate its validity in
Fig. 8, where we compare this linear-response approximation
and the measured change in concentrations∆ni = 〈ni(ε)〉−〈n0

i 〉

for four representative structures at fixed packing fraction
φ = 0.54: the 9A, FCC, and 11F (antagonist family), and 10B
(agonist family). The linear prediction quantitatively captures
the bias dependency of the considered antagonist structures.
For the agonist structure 10B, we observe higher-order devia-
tions for large biases ε ≤ �0.10, with an accelerated accumula-
tion of these structures that is not captured by our linear theory.
Note that a similar trend is observed for agonist structures in
lattice models.22

FIG. 8. Tests of the linear response regime: the symbols represent the varia-
tions in concentration∆ni = ni(ε)−n0

i with vertical bars corresponding to one
single standard deviation as computed from the Monte Carlo trajectory. The
straight orange lines are the predictions of Eq. (4), with covariances evaluated
at ε = 0. For all the plots, the packing fraction is φ = 0.54.

Importantly, these results demonstrate that the accurate
knowledge of the covariance coefficient at a zero bias is suffi-
cient to infer with quantitative accuracy the structural changes
in the system for biases as large as ε ≈ ±0.1. This is not
specific to structure 7A. In principle, we could consider bias-
ing the system toward any single structure or any weighted
combination of structures as in Eq. (3): our approach encom-
passes complex liquids described by an arbitrary set of biases
ε i, providing a predictive tool to quantitatively assess the
structure of any liquid at reasonably low value of the biases,
or equivalently at sufficiently high temperature. Beyond the
linear response regime, these results become quantitatively
inaccurate, but retain a qualitative pertinence; for instance,
crystallization will become essentially impossible if the con-
centrations of all four-fold crystalline structures become too
low.

V. CONCLUSIONS

Through the analysis of structural covariances in the
biased hard sphere fluid, we have shown that it is possible
to understand how five-fold local order affects other compet-
ing motifs, such as those with four-fold symmetry which are
related to crystalline order. We have discussed how covariances
allow us to identify structural relationships between different
motifs, and we have illustrated how this applies to the par-
ticular case of the topological cluster classification. Structural
covariance reveals the existence of two main families of struc-
tures in the classification, pertaining to five-fold symmetric
and crystal-like structures, respectively. An interesting line of
research would be to extend the approach to other classifica-
tions (such as the Voronoi indexing) and to compare different
classification strategies according to the metric provided by
the covariances.

In our study of the hard-sphere fluid, we have found that
the covariance approach is predictive in a wide range of bias
values, estimating correctly, in the linear-response regime,
structural changes for any of the structures classified in the
topological cluster classification.

Our work demonstrates how an analysis based on struc-
tural covariances can be employed to investigate off-lattice
models, providing a first proof of principle in the case of hard
spheres. Other aspects of structural correlations in the fluid
phase will deserve further study and comparison with the origi-
nal on-lattice results. For example, in Ref. 22, it has been shown
that the so-called crystal affinity QX B ∂nX /∂(1/T ) can be
expressed as QX = −

∑
j CX,jεX ,j derived from the covariance

coefficients between the crystalline motif X and the remain-
ing motifs. Remarkably, in Ref. 22, the affinity Q displays
a characteristic anti-correlation with the crystallization times
for the on-lattice systems. Understanding how this relation
holds in the case of off-lattice models and how it depends
on the specific identification of crystalline motifs (e.g., FCC,
11F, or others such as bond order parameters7,41) according
to different structural descriptors will be the subject of further
work.

More generally, alternative routes to the calculation of the
covariance matrix may provide efficient methods to estimate
structural changes for a given set of structures: nonequilibrium
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protocols (such as shearing) are a potential avenue to measure
structural couplings and covariances quickly and at a lower
computational cost than biased Monte Carlo. On the exper-
imental side, since the knowledge of the local motifs is key
to our approach, colloidal experiments (where the individual
particle coordinates can be resolved) are most suitable for a
test in the laboratory of the predictive power of the structural
covariance analysis. However, since the covariances are com-
puted between concentrations of different structures, spatial
resolution is only necessary to identify chosen motifs. This
means that as long as we are able to estimate local concen-
trations of particular motifs and preserve sample to sample
variations, it is possible to compute covariances between dis-
tinct motifs even without the precise knowledge of all of the
atomic positions. Advanced scattering techniques on molec-
ular liquids (such as angstrom-beam electron diffraction42,43)
may provide the route to measure such concentration and com-
pute covariances between different sub-sampled regions of a
dense, or supercooled, liquid.
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