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Coupling between criticality and gelation in
‘‘sticky’’ spheres: a structural analysis†

David Richard,a James Hallett, b Thomas Speck a and C. Patrick Royall *bcd

We combine experiments and simulations to study the link between criticality and gelation in sticky spheres.

We employ confocal microscopy to image colloid–polymer mixtures and Monte Carlo simulations of the

square-well (SW) potential as a reference model. To this end, we map our experimental samples onto the SW

model. We find an excellent structural agreement between experiments and simulations, both for locally

favored structures at the single particle level and large-scale fluctuations at criticality. We follow in detail the

rapid structural change in the critical fluid when approaching the gas–liquid binodal and highlight the role of

critical density fluctuations for this structural crossover. Our results link the arrested spinodal decomposition

to long-lived energetically favored structures, which grow even away from the binodal due to the critical

scaling of the bulk correlation length and static susceptibility.

I. Introduction

Understanding how an amorphous system becomes dynami-
cally arrested upon compression or cooling is a long-standing
challenge in statistical physics. Such amorphous solids encom-
pass states of matter such as glasses, films, plastics, and gels,
among others. Despite the fact that these systems are of
technological importance and have received a lot of attention
in the literature,1,2 the microscopic mechanism responsible for
macroscopic arrest remains elusive. For instance, the question
whether the glass transition can be explained in the context of a
thermodynamic or structural phase transition is still debated.3–7

Interestingly, gels, in contrast to glasses, can have very sparse
spatial structural arrangements, often described by a percolating
network of bonded particles whose degree of dilution can in
principle be unbounded.8,9 These networks can result from
cross-linking polymer chains or from physical bonds. The latter
are caused, e.g., by depletion attractions10 and for some time have
served as a well-controlled model system to study glasses and
gels.10–18

Upon decreasing the range of attraction between particles,
the gas–liquid coexistence becomes metastable with respect to
fluid–solid coexistence, with a metastable critical point.19,20

In the limit where the attraction range becomes smaller

than roughly 10% of the diameter of the particles, the shape
of the attractive part of the pair-wise potential becomes
irrelevant.20,21 This gave rise to the extended law of corres-
ponding states,21 which can also explain some aspects of the
phase behavior of protein solutions.22–24 Experimentally, such a
short-ranged attraction can be probed using colloid–polymer
mixtures,10 so-called ‘‘sticky’’ spheres. Here, the polymers play
the role of depletants for the large colloidal particles, where the
radius of gyration of the polymer chains sets the range of
attraction.

In the context of understanding the gelation of particles with
short-ranged attraction, much work has been done during the
last 20 years.8,13,16,25–34 Several scenarios have been proposed,
including diffusion-limited cluster aggregation,35,36 phase
separation,8,29 and percolation;26,37,38 and these can couple in
different regions of the phase diagram.9 Some of this work links
the gelation to an arrested spinodal decomposition8,16,29,39

and thus, a direct consequence of the underlying gas–liquid
coexistence. A possible microscopic mechanism for the arrest was
proposed with the presence, at gelation, of clusters that minimise
the local potential energy.16 Furthermore, it has been shown that
gelation in sticky spheres offers a clear dynamical signature in
comparison with a hard-sphere glass, where authors found a
quasi-discontinuous increase in the relaxation time of the fluid
for various packing fractions.34 These dynamical transitions were
found to be located at the gas–liquid binodal, even for a very dense
gel, with a packing fraction exceeding the freezing point of the
hard-sphere fluid.34 Another study has suggested that the gelation
line is located before the phase separation and extends at higher
densities toward the location of the attractive glass.40 A more
recent numerical study37 of the adhesive hard-sphere model41,42

has linked the experimental gelation line to the mean-field rigidity
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transition introduced by He and Thorpe43 in the context of
random networks. More recently, a connection between directed
percolation44 as an equilibrium pre-structural transition to gela-
tion has been proposed.38

The suggested relationship between the liquid-gas phase
separation line29,34,39 and gelation implies that critical fluctua-
tions may influence the gelation process in the vicinity of the
critical isochore. While criticality has been studied in colloid–
polymer systems,45,46 this work has tended to focus on systems
where the interaction range is long enough that the system
exhibits a stable colloidal liquid phase. In colloid–polymer
mixtures, this corresponds to a polymer–colloid size ratio of
around 0.3.10,47 For such systems, the colloidal liquid is not
dense enough to arrest, and gelation is only achieved upon
quenching with a much stronger attraction strength than that
requited for criticality.48 However, in the sticky sphere limit,
immediately upon quenching through the binodal, the density
of the colloidal ‘‘liquid’’ is sufficient that the system undergoes
dynamical arrest.34 Under these circumstances, gelation may
couple to critical fluctuations and this forms the subject of
our study.

II. Methods
A. Experiments

We employ confocal microscopy and particle tracking to resolve the
positions of the colloidal particles. Colloid–polymer mixtures are
composed of polystyrene (PS) polymer chains and sterically
stabilized polymethyl methacrylate (PMMA) spheres with diameter
sSEM = 2950 nm and polydispersity D = 5%, determined via
scanning electronic microscopy (SEM). We use rhodamine
as a fluorescent label. Polystyrene has a molecular weight
Mw = 1.3 � 106 corresponding to an effective radius of gyration
Rg = 35 nm under y conditions. We use a solvent mixture of
cis-decalin and cyclohexyl bromide which is density and refrac-
tive index-matched. We additionally screen electrostatic inter-
actions using 4 mmol of tetrabutylammonium bromide salt.
From previous work,17 we estimate Rg C 50 nm at room
temperature. This leads to a polymer–colloid size ratio q C 0.03
approaching the sticky sphere limit. Samples are first shear-
melted. We then seal each sample into a borosilicate glass capillary
with epoxy resin. We let the samples equilibrate for 30 minutes
before imaging. From previous work, this time it is estimated to
correspond to more than 200 Brownian times.34

The samples are imaged by confocal microscopy using a
Leica SP8. We image different parts of the suspension at least
15 mm from the wall. To extract the colloidal particle positions,
we employ three-dimensional particle tracking using the
difference in the Gaussian method. This tracking is performed
using the package ‘‘Colloid’’ developed by Leocmach et al.49

From the tracking we estimate the sample packing fraction as
f C pNs3/(6V), with N is the number of tracked particles and V
is the volume of the sample. It is well known that sterically
stabilized PMMA colloidal particles can exhibit swelling and
unscreened electrostatic interactions,50,51 which can lead to

intrinsic softness modeled by an effective diameter s 4 sSEM.
To estimate s under our experimental conditions, we apply a
method similar to the one used in ref. 52. In this study, the
authors matched the pair correlation function g(r) of dense
hard spheres with the known Percus–Yevick expression by
varying the effective diameter s. In our work, we extend this
mapping with matching the g(r) of the colloid–polymer mixture
with an attractive square-well fluid, which we adopt throughout
this study as a reference system for our mixtures. In addition,
our mapping allows us to determine the systematic tracking
errors of the colloidal positions, responsible for the broadness
of g(r) at contact.46 More details can be found in Appendix A.
We find s = 3100 nm, which corresponds to an effective
diameter that is B5% larger than for the SEM estimation.

B. Computer simulations

We study the behavior of the square-well (SW) model serving as
a reference model for our colloid–polymer mixtures. We per-
form standard Monte Carlo simulations in the NVT ensemble
employing local moves. The system is composed of N = 5000
particles with diameters drawn from a Gaussian distribution
with polydispersity D = 5%. The interaction potential between
two particles i and j is

VðrÞ ¼

1 if r � sij

�VSW if sij o r osij þ d

0 if r � sij þ d

;

8>>><
>>>:

(1)

where sij = (si + sj)/2, with si and sj being the diameters of
particles i and j respectively. The attraction range d is set by the
polymers and fixed to 0.03s and is independent of sij. If not
mentioned otherwise, simulations are performed in a cubic
box. Additionally, we use a slab geometry to compute the
coexistence packing fraction between the gas and liquid phases
with box lengths: Lx = Ly = Lz/2. Initial configurations are
randomly drawn and any overlap between particles is removed
using the algorithm by Clarke and Wiley.53 We determine the
binodal by fitting the density profile along the gas–liquid
coexistence through

fðzÞ ¼
fl � fg

2
þ
fl � fg

2
tanh

z� z0

2w

� �
: (2)

Here, fg and fl denote the gas and liquid coexistence
packing fractions, and z0 and w denote the interface position
and width, respectively. Since for this polydispersity the liquid
is still metastable with respect to the crystal, we check that all
liquid slabs remained in the liquid phase. All distances and
energies are expressed in units of s and kBT, with kB being the
Boltzmann constant. Throughout, we denote the dimensionless
attraction strength by V = VSW/kBT.

C. Mapping procedure

The attraction strength between colloidal particles is controlled
by the polymer concentration cp. However, it is challenging to
determine cp precisely enough to map it directly. Instead, we
map every sample individually through matching the experimentally
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measured total correlation function hexp(r) = gexp(r) � 1 and the
distribution Pexp(n) of bond numbers n to the SW fluid,29,46 yielding
an effective attraction strength V for every experimental sample.

Specifically, we compute rhsim(r) and Psim(n) on a grid in the
(f, V) plane around the critical point. We evaluate P(n) by
constructing a bond network using a Voronoi decomposition
considering only direct Voronoi neighbors54,55 with the bond
distance cut-off rc set to 1.5s. Following the work of Largo et al.,
we estimate the location of the critical point to be at fc C 0.275
and Vc C 3.22 for zero polydispersity.20 We shall show later on
that this value is very close to the critical point of our model
with D = 5%. We use packing fractions ranging from f = 0.05 to
0.5 with an interval Df = 0.025 and V values ranging from 0 to 4
with DV = 0.2 for 0 o V o 2 and DV = 0.1 for 2 o V o 4. Overall,
we end up with a grid of 608 state points. Beyond V C 3.2, the
fluid crosses the binodal and starts to form a gel. Thus,
structural observables such as h(r) and P(n) might evolve due
to aging. We fix for every state point an MC relaxation time of
106 steps before we compute any observables. Another 106 steps
is used to compute observables. We then pick for each sample
the two numerical packing fractions f� and f+, which encom-
pass our sample density. We then compute for each V value hsim

and Psim as a linear combination of f� and f+. We finally
compute as a ‘‘goodness’’ parameter for our matching procedure
the least squares

wh
2 ¼

X
i

ri hexp rið Þ � hsim rið Þ
� �� �2 (3)

and

wP
2 ¼

X
i

Pexp nið Þ � Psim nið Þ
� �2

: (4)

In practice, wh
2 is computed for r o 4s, while an additional

Gaussian (D = 5%) noise is added on numerical positions to
mimic particle-tracking errors46 (see Appendix A). The global
minima of wh

2 and wP
2 give us two independent evaluations of

Vexp. We then assign for each sample the mean of those two,
Vexp = (Vh + VP)/2, whereas |Vh � VP|/2 serves as an estimation
for errors.

In Fig. 1(a) and (b), we present wh
2 and wP

2 as a function of V
for three samples picked along the critical isochore. From a
hard sphere fluid (gray curves) to the gel (orange curves), we
always observe a global minimum for w2 and find a good
agreement between Vh and VP. Results of the SW model are
shown in Fig. 1(c and d) and compared to experimental data.
The correspondence between experiments and simulations is
excellent, and we observe only small discrepancies in the bond-
number distribution for the gel sample for small bond num-
bers n (see Fig. 1(d)). Since the fluid is ergodic, the mapping to
the SW fluid should be robust (as indeed it is). In contrast, the
gel is non-ergodic and thus the correspondence would depend
on the dynamics and history.70 Hence, these deviations are
not surprising since we do not include the effect of aging in
our mapping method.

III. Results
A. Phase diagram

We start by discussing the phase behavior of our system
as shown in Fig. 2. We choose to present our data in the f–V
plane. The gas–liquid binodal of our reference system is
indicated by the black solid line. The location of the critical
point is indicated by a black star and was determined via the
block distribution function method,56 we shall come back to
this point later. From our mapping procedure, we can place
each sample at a given f and V. We distinguish an ergodic fluid
in contrast to a gel by respectively blue and orange square
symbols. We also indicate the samples without polymers, i.e. hard
spheres, in gray. The typical gel sample shows a clear dynamical
arrest with a relaxation time beyond 100tB (ESI,† Video) with tB

being the Brownian time. This is consistent with a previous
dynamical experimental study for a very similar system.34

The main observation here is that arrested samples are lying
close to the binodal for a wide range of densities (0.1 o fo 0.4).
That is to say, all samples which are gels always map onto state
points of the reference system which are on or above the binodal.
This means that the radial distribution function and bond
distribution of a gel sample never correspond to an ergodic
fluid. This is in agreement with previous numerical and experi-
mental studies, which associate the gelation with the location of
the spinodal and thus a direct consequence of the equilibrium
properties of the gas–liquid coexistence.8,16,29,34 For short-ranged
attractive systems, the binodal and spinodal are located very
close together, such that in experiments it is hard to distinguish
them.34 The highest attraction strength at which the sample
remains ergodic is found at V C 2.9. Additionally, in Fig. 2, we

Fig. 1 Mapping onto the square-well model. (a and b) Evolution of the
least squares w2 as a function of the attraction strength V for the total
correlation function rh(r) (a) and bond distribution P(n) (b) of three
samples. (c and d) Comparison of rh(r) (c) and P(n) (d) of the experimental
samples (empty symbols) with the SW model for matched V (lines). The
color code distinguishes a hard-sphere fluid (gray) from a critical (blue) and
gel (orange) sample.
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show the images using confocal microscopy along the critical
isochore f C fc. We observe a rather continuous change of
structural behavior from hard-sphere fluid to gel. At V = 0
(Fig. 2(b)), the spatial distribution of colloids is homogeneous
at length scales larger than the particle size. When increasing the
concentration of polymers, i.e. increasing V, clusters start to
form with lower densities in between (Fig. 2(c and d)). Finally,
the suspension shows an arrested spinodal decomposition,
which is revealed in Fig. 2(e) by large assemblies rich in colloidal
particles and depleted zones without any particles.

B. Critical density fluctuations

In Section IIIA, we have shown that the gelation line is located close
to the binodal and that dense domains of colloidal particles grow
progressively as a function of polymer concentration. We now
demonstrate how this change in behavior can be directly linked
to the fluctuations present in the context of criticality. To quantify
the spatial evolution of the density, we use the block distribution
function method,56 which provides the location of the critical point
Vc

57 and to some extent the isothermal susceptibility w of the
fluid.58,59 The procedure is as follows: We divide our system into
a series of cubic subcells of dimension l = L/b, with b being an

integer. The global density is defined as r ¼ 1

nb

P
i

ri, where nb = b3

is the number of subcells and ri is the local density in the subcell i.
We then extract the second and forth moments of density hm2i and

hm4i computed as mxh il ¼
1

nb

P
i

ri � rð Þx. We can finally define

the Binder cumulant through

Ul ¼
m4h il
m2h il2

: (5)

One of the main properties of Ul is its size invariance with
respect to l at the critical point.56 This allows us to determine
unambiguously and accurately the critical attraction strength
Vc in computer simulations. In more detail, we compute Ul for
various attraction strengths V and subcell lengths l. To this end,
we sample Ul for each V values at a fixed packing fraction
f C fc = 0.275 using extra 108 MC steps. In Fig. 3, we show the
evolution of Ul as a function of V. We observe a crossing for
V 4 3, which can be resolved more accurately as shown in the
inset of Fig. 3(a). We find Vc = 3.19(3) as the final value for the
critical point, which is close to the value determined by Largo
et al.20 for zero polydispersity. Additionally, in Fig. 3, we show
experimental results for Ul at a fixed subcell length, l = 2s.
Although the experimental data suffer from a lack of statistic in
comparison with simulation data, we observe an overall good
agreement. More precisely, gel samples indicated by orange
squares are, within the errors, located either at the cumulant
crossing or at larger attraction strengths.

The change in Ul is rationalized through a density distribu-
tion Pl(ri) that moves from a unimodal Gaussian shape, cen-
tered at ri = �r, to a bimodal shape, where the two maxima of the
distribution move progressively towards the coexistence densities
r� and r+. In Fig. 4 we show for both experiments and simula-
tions the density distributions for subcells of length l C 3s
(without reaching a truly bimodal distribution, presumably due
to the vicinity to the critical point). To be consistent with the
phase diagram given in Fig. 2, we choose to plot Pl(f) instead of
Pl(r). We start with a hard-sphere sample (Fig. 4(a)) for which we
observe a narrow distribution lacking low density (f o 0.1) and
high density (f 4 0.5) regions. The same behavior continues
up to V = 2 (Fig. 4(b)). Upon further increasing V, we start to
observe broader distributions with almost empty (f o 0.1) and

Fig. 2 Phase diagram. (a) Phase diagram of the square-well with d = 3% and polydispersity D = 5%. Black points indicate the gas–liquid coexistence and
the black star indicates the critical point. The black solid line is a guide to the eye for the two-phase boundary. Gray, blue, and orange squares are,
respectively, hard-sphere fluid, colloid–polymer mixtures, and arrested gel samples. Confocal images are displayed in a–d: (b) hard-sphere fluid without
polymers (V C 0.0); (c) equilibrium fluid (V C 2.0); (d) fluid close to criticality (V C 2.9) and (e) gel phase (V C 3.2). The scale bars correspond to 20 mm.
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colloid-rich regions (f 4 0.5). This can be clearly seen for our
last ergodic sample at V = 2.9 (Fig. 4(c)). Interestingly, dense
regions can reach packing fractions larger than the freezing point
of a hard-sphere fluid. This explains why for non-polydisperse
samples, one can expect a speed-up of crystallization around the
critical point, where the dense regions arising from criticality will
lower the nucleation barrier.17,19,60–62 Continuing to quench, the
distribution becomes broader and non-Gaussian at V = 3.2, which

also corresponds to the location of our first gel sample.
Surprisingly, we find that Pexp

l matches quite closely the equili-
brated Psim

l , indicating that aging effects are not pronounced.
Finally, we can say that the overall behavior of Pl(f) confirms
quantitatively the observation made for confocal images in the
previous section [Fig. 2(a–d)].

C. Fractal dimension, bulk correlation length, and bond
distribution

We now turn to discuss the characteristic cluster shape and
length scale formed by colloidal particles when quenched
through criticality. We first compute the scattering intensity
I(q) as a function of the wave vector q from the Fourier trans-
form of the confocal pixel map. In Fig. 5(a) we show a typical
colloidal gel close to criticality and its associated Fourier
spectrum in the inset. A radial average leads to I(q) as shown
in Fig. 5(b) for different samples along the critical isochore.
Upon quenching, we observe a divergence of I(q) for small q as
a consequence of larger domains forming and diffusing light.
Since the scattering intensity I(q) is proportional to P(q)S(q),
where P(q) is the form factor and S(q) is the structure factor, we
expect for q 4 2p/s the scaling I(q) B q�4, which is confirmed
by the dashed line in Fig. 5(b). For small q, the scaling depends
on the shape of the diffusing clusters through df and its fractal
dimension. Previous small-angle neutron scattering (SANS)
experiments have shown that the fractal dimension at the
gelation is typically around df C 1.7,31 which is supported by
particle-resolved experiments63,64 and simulation.9

We will discuss this point in detail later on. We can
additionally extract S(q) for the small wave vector from
S(q) = I(q)/(AP(q)), where we evaluate (AP(q)) by fitting I(q) for
q 4 2p/s by a polydisperse form factor and a prefactor A, as
shown in the inset of Fig. 5(b). The resulting procedure is
shown in Fig. 5(c) and directly compared to simulation data.
We find an overall very good agreement between experimental
data and simulations. The structure factor can then be used to
extract an estimation of the bulk correlation length x through
the Orstein–Zernike scaling,

SðqÞ ¼ S0

1þ ðxqÞ2; (6)

which holds close to criticality for small q. In Fig. 5(d), we plot
the evolution of the fractal dimension df as a function of the
attraction strength V. We find upon increasing V a progressive
increase of df and saturation of gel samples at df = 2.4–2.5.
These values agree with fractal dimensions found for gel
samples at low volume fractions and large attraction strength.9

At criticality, where gelation occurs, we find df = 1.6–1.7, which is
consistent with a previous SANS experimental study.31

As a measure for the distance to the critical point, we define
the reduced attraction strength e = (Vc � V)/V. In Fig. 5(e), we
present the behavior of the bulk correlation length x as a
function of e. From the simulations, we find that x strongly
increases as e- 0 and that this increase is well modelled by the
Ising universality class with x B e�n up to e C 0.2, where in
three dimensions n C 0.63. In contrast, for the experimental

Fig. 3 Critical point. Evolution of the Binder cumulant Ul as a function of
the attraction strength V for three values of l. Solid lines and open symbols
indicate simulation and experimental data, respectively. The hard sphere,
ergodic fluid, and arrested gel samples are distinguished by gray squares,
blue circles and orange triangles respectively. Inset: Zoom into the cross-
ing region for simulation data.

Fig. 4 Density fluctuations. Packing fraction distribution Pl(f) for various
samples and matched simulations along the critical path for the subcell
length l C 3s. Colored histograms and empty black circles are respectively
experimental and simulation distributions. The effective attraction depth V
for each sample is indicated in figures.
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data, the equilibrium fluids follow closely the simulation data
until gelation occurs close to the binodal, whereby the system is
arrested and therefore the correlation length does not increase
beyond x E 2s. This rather small spatial correlation is not in
contradiction with confocal images of gels, where structures are
quite ramified in a network without large colloidal domains,
cf. Fig. 2(e) and 5(a). This behavior would indicate that gels are,
in a way, pictures of early critical fluids, where the cost of
breaking bonds does prevent relaxation and thus the growth of
the correlation length x.

Finally, in Fig. 5(f) we discuss the behavior of the bond
distribution through its variance hn2i. This has been shown
recently for a similar colloid–polymer mixture model based on
the Asakura–Oosawa potential that the variance of bond
distribution as a function of V is peaked close to gelation.38

We observe the same behavior in our simulations crossing the
binodal, where hn2i exhibits a maximum for V C 3.5. Upon
quenching further the variance decreases, indicating a progres-
sive aging of the network structure. The behavior of the variance
will of course depend on time and other factors such as hydro-
dynamic interactions.33,65 In experiments, we also observe a
growth of hn2i for equilibrium fluids (V o 3). We find larger

variances for gel samples, but not as high as in simulations,
which is also confirmed by image shown for x in Fig. 5(e), where
the gel structure corresponds to an arrested critical fluid. We
return to the behaviour in the gel state in Section IVC.

D. Local structure

We now go to smaller scales and enquire what type of local
structures emerge in a fluid close to criticality, and on their role
in the dynamical arrest of the gel network. We have seen that in
our experiments the typical length scale before gelation reaches
E2s, emphasizing that the change in the dynamics at gelation
is quite local and might only be caused by the first neighbor
shell of each particle. To gain insights into the local structure of
the super-critical fluid, we employ the topological cluster
classification (TCC).55 We use the same bond network as
described in the Methods section. From the TCC, we extract
the population of clusters of size m composed of 3–13 particles.
This includes crystal structures like face-centered cubic (fcc)
and hexagonal close-packed (hcp). In the TCC, each cluster type
is labeled with two characters mX, with m is the number of
particles composing the cluster and X is a letter to distinguish
different spatial symmetries. Those letters follow the convention

Fig. 5 Evolution of the fractal dimension, bulk correlation length, and bond distribution. (a) Confocal image of a gel close to criticality. The inset shows
the associated scattering pattern. (b) Scattering intensity I(q) as a function of the wave vector q for various samples along the critical isochore f C fc.
Inset: Fit of the form factor to extract S(q). (c) Structure factor S(q) as a function of the wave vector q for the same samples. Solid lines are from simulation
data at f C fc. (d) Evolution of the fractal dimension df as a function of the attraction strength V. The horizontal dashed line indicates the fractal
dimension reported for SANS experiments.31 (e) Evolution of the bulk correlation length x as a function of the reduced attraction strength e. Circles and
triangles are experimental and simulation data, respectively. The black solid line indicates 3D Ising scaling with x B e�0.63. (f) Variance hn2i of the bond
distribution as a function of the attraction strength V. The solid black lines indicate the simulation data for the critical isochore. Inset: Ergodic fluids before
gelation. All panels: arrows indicate the sample in which gelation occurred first and colors indicate attraction strength V.
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of the minimum energies of various potentials such as the Morse
potential.66 We then identify for each cluster size m the predomi-
nant type X which corresponds to a minimum energy structure, a
locally favored structure (LFS).16 In practice, we determine these
clusters by following the global population spectrum of all clusters
at different values of the attraction strength V. The population
frequency of a cluster of type c is computed as Nc/N, with Nc the
number of particles composing a cluster of type c and N the total
number of particles. In the experimental data, we do not consider
colloidal particles that are less than s away from an edge.

In Fig. 6(a), we show the population of clusters comparing
experiments and simulations. We find an excellent agreement,
which demonstrates that mapping to the SW fluid also reproduces
the higher-order structural features present in the experiments.
We pick three different state points along the critical isochore
including a hard-sphere fluid (V = 0), near-critical fluid (V = 2.9),
and gel (V = 3.2). We first notice that the overall histograms show
that when increasing V (from top to bottom), larger clusters
composed of more than 10 particles appear. Additionally, we do
not observe any signature of crystallization, i.e. no fcc nor hcp.
However, we find that medium-sized clusters with 5 o m o 10
grow progressively with respect to V, and always with the same
order among clusters with equal number m of particles. In the
following, we exclude larger clusters with m 4 12 from the
discussion since their weights are negligible.

IV. Discussion
A. Entropy favors low-symmetry clusters

For isolated clusters it has been shown that the relative popula-
tion of clusters with the same number of bonds is determined

by entropy.15,67 Interestingly, this still holds for the fluid and
even the gel as shown in Fig. 6(b) for m = 6. We find that 6Z
clusters, which are polytetrahedra, are always significantly more
prevalent in the system compared to 6A clusters, which are
octahedra (the population goes up from C5% for isolated 6A
to C10% in the fluid). The same trend can be observed for other
clusters, with the more symmetric clusters being less populated.
This demonstrates that the minimum (free) energy clusters are
determined by rotational and vibrational entropies. It has also
been shown that the potential part of the free energy will
promote both octahedral and tetrahedral orders. The same
observation was found in a more recent numerical study of the
SW fluid,19 where gelation was associated with the polytetrahe-
dral order. Another important observation is that we also find a
large population of clusters with fivefold symmetry (8B, 9B, and
10B) at any V. These structures are known to be local energy
minima of the Morse potential.66 Hence, even though a gel is in
an energy landscape far away from the equilibrium state, it can
still locally minimize its free energy by forming isolated locally
favored structures, which eventually will overlap and form the
gel network. For larger clusters with 11 and 12 particles, we
observe several Morse minima that correspond to 10 o r0 o 25
(r0 is the Morse potential parameter controlling the range of
attraction, in our case d). The range for r0 found here is
consistent with short range attraction. We found that 11E and
12D are the dominant structures for m = 11 and m = 12
respectively, which corresponds to r0 C 17.66

B. Hard sphere fluid

Having obtained a set of minimum energy clusters, we use
these clusters to follow the overall structural change in the

Fig. 6 Identification of locally favored structures. (a) Populations of local clusters for three different samples along the critical density, fc C 0.275. From top
to bottom: a hard-spheres sample, a critical fluid, and an arrested gel. (b) Experimental probability to observe octahedron and polytetrahedron in clusters
composed of 6 particles. Colors distinguish the three different samples along the critical isochore. (c) Snapshots of selected locally favored structures.
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fluid. As a reference, we first consider the compression of the
hard sphere fluid (V = 0) towards the glass shown in Fig. 7(a). At
low density, fC 0.05, there is an absence of clusters as one can
expect since particles are mostly isolated without any neigh-
bors. At this low density, the system exhibits as a larger cluster
with only a few percents of 4A (tetrahedron). The typical spatial
arrangement of clusters is illustrated with an experimental
snapshot in Fig. 8(a1). We then observe a rapid change from
f = 0.05 to 0.25, where medium-sized clusters such as 5A, 6Z,
7C, and 8B start to appear, cf. Fig. 8(a1–a3). This continues until
a crossover at f 4 0.25, where isolated and small clusters
(3A and 4A) are converted with a combination of medium
clusters (5A, 6Z, 7C, and 8B) to larger structures: 9B, 10B, 11E,
and 12D, see Fig. 8(a4). This kind of conversion will continue at
higher packing fractions with the extinction of 5A, 6Z, and 7C
to promote clusters sharing the same sub-structures. We also
notice that the agreement between experiments and simulation
is excellent. This gives another confirmation for the robustness
of the mapping procedure employed.

C. En route to the gel

In Fig. 7(b), we follow the same idea but now approaching the
gel. We fix the density to the critical packing fraction fc = 0.275
and progressively increase the attraction strength V towards the
binodal. We find a plateau with little change in structure until
V C 2. We show the spatial arrangement of clusters at V = 1.1 in
Fig. 8(b1), where we only display clusters with m 4 4. For
higher attraction strengths, V 4 2, we observe a structural
crossover (cf. the compression of hard spheres). Clusters with
m 4 4 increase quickly until reaching the binodal. Interest-
ingly, this change starts where we have located the beginning of

critical scaling for the bulk correlation length x and the static
susceptibility w. The main contribution to this structural evolu-
tion comes from the creation of a large amount of 6Z, 7C, and
8B clusters, see Fig. 8(b1–b3). These clusters are not necessarily
localized in space, but we do observe denser regions with even
the presence of 9B at V = 2.9, see Fig. 8(b3). This is consistent
with our previous findings in Fig. 4(c), where the density
distribution exhibits a broader tail toward large packing frac-
tions f4 0.4. Therefore, we can expect a link between the local
structures of dense hard spheres and the colloidal-rich regions
arising from critical density fluctuations. Finally at V 4 Vc,
which corresponds to our first identification of a gel, clusters
percolate the whole system, see Fig. 8(b4). The inner parts of
the percolating structure are rich in large clusters such as 8B,
9B, and 10B, which are defective icosahedra sharing a fivefold
symmetry. They are known to play an important role in the
slowing down of the dynamics for dense hard-spheres

Fig. 7 Evolution of LFS through compression and cooling. (a) Evolution of
the fraction of locally favored structures as a function of the packing
fraction f for hard spheres (V = 0). (b) Evolution of the fraction of locally
favored structures as a function of the reduced attraction strength e. The
yellow area indicates the two-phase region where gelation occurs. Solid
lines and open squares indicate the results for simulations and experi-
ments, respectively.

Fig. 8 Experimental snapshots of the cluster evolution. Evolution of the
clusters when increasing the packing fraction f (left) and attraction
strength V (right). Only structures with m 4 4 are shown for the cooling
path.
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approaching the glass transition.18,68,69 This may help to
explain the origin of the rigidity of the network leading to
gelation.29,34

The crucial difference between a gel and a dense hard
sphere liquid is that not only the defective icosahedra (8B, 9B,
and 10B) are very stable due to entropy, but each bond breaking
will also result in an energetic penalty of more than 3kBT.
Therefore only colloids in the outer part of dense regions will be
able to break bonds and diffuse (see the ESI,† Video). To
conclude, we find that the structural crossover starts 1kBT
before the location of the binodal when increasing V. This is
a direct consequence of criticality inducing larger density
fluctuations. For a monodisperse sample, these fluctuations
might promote crystal precursors and lower the nucleation
time.19 For a polydisperse sample, however, they induce low-
symmetry polytetrahedral backbones for the bond network.
These clusters are incompatible with respect to the crystal
symmetry. Hence, the system will fall into an amorphous solid
state, the gel.

V. Conclusions

We have investigated the role of criticality in the gelation of
sticky spheres. Combining experiment and simulations, we
provide further evidence that the dynamical arrest is initiated
by the onset of critical fluctuations in agreement with previous
work.8,16,29,34 We have demonstrated that carefully mapping
two-point structure to the square-well fluid faithfully repro-
duces the experimental data including higher-order local struc-
tures as identified by the topological cluster classification
method.55 In particular, we find that gel samples are (i) located
at the cumulant crossing, (ii) identified by a broad distribution
of densities, and (iii) have correlation lengths of x C 2s. We
find a sharp but continuous increase of locally favored struc-
tures when increasing the attraction strength. This increase
occurs in concert with the increase of both the bulk correlation
length and the static susceptibility, which can be extracted
together with the structure factor of the fluid. More precisely,
the start of the critical scaling of these two quantities coincides
with the appearance of larger locally favored structures. The
picture of a gel is thus that of an early critical fluid, which is
arrested due to the large cost of breaking bonds. Before arrest,
clusters of several particles appear, which have a low symmetry
favored by entropy. The densification of these clusters driven by
the incipient critical fluctuations then leads to the gel.
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Appendix A: effective colloid diameter

There are two challenges for the determination of the effective
packing fraction and the effective temperature of a colloidal
sample from real space imaging. First, it is difficult to know the

change in the colloidal diameter in solution due to swelling and
unscreened electrostatics.50,51 This leads to a poor estimation
of the sample packing fraction and, e.g., a mismatch of struc-
tural oscillations in pair correlations. Second, errors due to
imaging and tracking will lead to an error on the true position
of a particle, resulting in a broadening of the peaks of a pair
correlation.46 In the context of matching a sample’s g(r) onto
simulations, these errors will induce a systematic overestimation
of the temperature of a mixture at a given polymer concentration
cp. To handle these issues, we pick a sample close to criticality
and compute its pair correlation r[g(r) � 1] for various effective
diameters. To mimic tracking errors, we pick a simulation state
point at criticality and apply different Gaussian noises of var-
iance Derror to the particle positions. We then find the optimal

set of parameters that minimize w2 ¼
P
i

ri hexpðriÞ � hsimðriÞ
� �� �2

.

The evolution of w2 as a function of the parameters is shown in
Fig. 9(a). We find a unique minimum for w2 leading to an
effective diameter s = 3100 nm (5% larger than for dry colloids)
and a tracking error Derror = 5%, which is consistent with
previous studies.46 The resulting matched pair correlation func-
tion is shown in Fig. 9(b). We observe a very good agreement
between experiment and simulation which validate s and Derror.
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