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ABSTRACT
Liquids in systems with spherically symmetric interactions are not thermodynamically stable when
the range of the attraction is reduced sufficiently. However, these metastable liquids have lifetimes
long enough that they are readily observable prior to crystallisation. Here we investigate the fate
of liquids when the interaction range is reduced dramatically. Under these conditions, we propose
that the liquid becomes kinetically unstable, i.e. its properties are non-stationary on the timescale of
structural relaxation. Using molecular dynamics simulations, we find that in the square well model
with range 6% of the diameter, the liquid crystallises within the timescale of structural relaxation for
state points except those so close to criticality that the lengthscale of density fluctuations couples to
the length of the simulation box size for typical system sizes. Even very close to criticality, the liquid
exhibits significant structural change on the timescale of relaxation.
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1. Introduction

Many atomic systems typified by the Lennard–Jones
model exhibit a temperature range over which the liq-
uid is thermodynamically stable. When the range of the
attraction is short relative to the molecular size, such as
in C60, the system has at most only a tiny temperature
range where the liquid is stable [1]. However these and
related materials exhibit metastable liquid states whose
lifetime is long on simulation timescales [2,3]. Relative
to the particle diameter, even shorter ranged attractions
can be obtained with colloid-polymer mixtures where
the strength and range of the effective attraction between
the colloids can be tuned with the polymer [4–6]. Other
systems with similar behaviour include weakly stabilised
colloids [7] and those where the suspending liquid
induces critical Casimir attractions between two colloids
[8–10]. Moreover, short-ranged attractive systems form a
basicmodel for proteins [11,12], whose interaction range
can also be ‘tuned’, by the addition of ligands, such that
the protein liquid can become thermodynamically stable
(in the absence of solvent) [13].
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Systems with short-ranged attraction such as col-
loids can often undergo gelation [4,14–17] to form
a bicontinuous network which can be locally crys-
talline [5,18–21]. Gelation is associated with spin-
odal liquid–vapour demixing to a bicontinuous net-
work [15,16,22–24] where the liquid is dense enough
to undergo dynamical arrest leading to the solid-like
nature of the gel [6,15,16,23,25,26]. Gelation in this con-
text corresponds to a state which is intrinsically out-of-
equilibrium, due to its dynamical arrest and is illustrated
in the schematic phase diagram in Figure 1 where gels are
found within the vapour–liquid coexistence region.

When gelation is avoided, i.e. that the liquid is of suf-
ficiently low density to remain mobile, or the system
remains outside the liquid–vapour coexistence region of
the phase diagram, density fluctuations in the vicinity of
a critical point can massively enhance nucleation rates
[2,28–30]. Now the density of the liquid in coexistence
with its vapour is influenced by (at least) two factors. One
is the temperature: approaching criticality, the density of
the liquid approaches that of the critical isochore, while
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Figure 1. Colour online. Schematic phase diagram of spheres
with a short-ranged attraction in the volume fraction-inverse tem-
perature plane. Shown are thermodynamically stable states, fluid
(F) and crystalline solid (X). Also shown are states which are not
thermodynamically stable. These are indicated with an asterisk ∗
and comprise a vapour (V∗), liquid (L∗) and glass. Solid grey lines
denote thermodynamically stable fluid-crystal (F−X) coexistence.
Long dashed blue line denotes vapour–liquid coexistence (V∗ −
L∗) which is not thermodynamically stable. The critical point is
indicatedby the unfilled circle. For sphereswith very short-ranged
attractions, the spinodal line is very close to the binodal, and is
not shown here. Except very close to criticality, the liquid is dense
enough to be glassy, which leads to arrested phase separation
i.e. gelation. At high densities, spheres undergo dynamical arrest
(vitrification) in a continuous fashion, which is indicated by the
yellow shaded regions [23,27]. Such slow dynamics hamper the
accurate determination of phase boundaries and so in this glassy
regime, we give an indication of possible phase boundaries by
thin dashed lines. In this work, we are interested in a kinetic crys-
tallisation instability. To explore this phenomenon, we work along
the (V∗ − L∗) coexistence line, as indicated by the grey shading
marked KCI.

upon deeper quenching, the density of such spherically
symmetric systems increases. The second factor is inter-
action range. As noted above, longer-ranged systems such
as the Lennard–Jones model exhibit a wide range of tem-
perature where the liquid is stable, shorter ranged such
as C60 feature at best a much reduced range and shorter
ranged interactions again (such as the square well with
range 3%, Equation (1)) have no thermodynamically sta-
ble liquid and undergo gelation upon veryweak quenches
below the critical temperature [23]. Since spheres crys-
tallise at higher density, we infer that a larger temperature
range of thermodynamically stable liquid implies a lower
density.

We now consider previous work relating to this sug-
gestion of a higher liquid density for short-range inter-
actions in a little more detail. For relatively long inter-
action ranges, the liquid density increases (for a given
degree of cooling with respect to criticality) [31–34].
For shorter interaction ranges, problems with crystallisa-
tion of the liquids (precisely the issue we address here)
mean that it can be necessary to use theoretical treat-
ments, such as integral equation theory such as the Self-
Consistent Ornstein-Zernike Approximation (SCOZA)
to determine the density of liquids in short-ranged attrac-
tive systems. Such calculations show that upon decreas-
ing the range of the interaction, the density of the liquid

increases [35–37]. More recently, simulations in which
crystallisation has been suppressed, have confirmed this
feature for the square well interaction with range 3%,
and obtained liquids with volume fractions of φ = 0.59,
well above the freezing transition of, for example, hard
spheres [23].

It is important to note that gelation in these sys-
tems is related to spinodal liquid–vapour demixing
[6,15,16,23,25,26]. But the binodal, of course, defines the
liquid–vapour coexistence. However, at least for systems
such as the square well with 3% range (see Equation (1)),
and colloid-polymermixtureswith comparable range, for
practical purposes, the spinodal and binodal are almost
indistinguishable and the liquid–vapour coexistence line
in the phase diagram is rather flat so one finds gelation
upon quenching below criticality across a wide range
of density (see Figure 1). Only very close to critical-
ity is the liquid of sufficiently low density to completely
demix [23].

In addition to dynamical arrest, characterised by the
large (but continuous [23,27]) increase in structural
relaxation time, τα [27,38], spheres at high-density
exhibit an important phenomenon for our purposes: rel-
ative to the structural relaxation time, the crystallisation
time for a given system size becomes very small [39–43].
In particular, in the case of hard spheres, for reasonable
system sizes for computer simulation, sayN ∼ 104 parti-
cles, when the volume fraction exceeds around φ ∼ 0.57
the time to crystallise falls below the structural relax-
ation time [41]. By ‘crystallisation time’ wemean that the
system is no longer in a stationary state: the fraction of
the system identified as crystal by suitable order param-
eters increases irreversibly [41]. We emphasise that this
crystallisation time observation is, of course, related to
system size: for a sufficiently large system, there will be
nucleation events arbitrarily close to the phase boundary,
and so any thermodynamically metastable hard sphere
fluid will nucleate on a short timescale. However, even
larger experimental systems often struggle to see nucle-
ation significantly closer to the phase boundary than
do brute-force computer simulations [41]. Indeed few
experiments on hard spheres succeed in observing crys-
tallisation below a volume fraction of φ = 0.52 [44],
i.e. at a relative increase in density of some 5% com-
pared to the freezing volume fraction around φ = 0.492.
These considerations mean that, while the volume frac-
tion quoted above, φ ∼ 0.57, is in no sense an absolute
quantity and must of course depend on system size, nev-
ertheless, for system sizes typically encountered, obtain-
ing equilibrated fluid state points for φ � 0.57 is usually
straightforward, but for higher volume fractions, crys-
tallisation intervenes in the case of monodisperse sys-
tems.We thus conclude that hard spheres exhibit a kinetic
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crystallisation instability, at sufficient volume fraction,
that is to say the time to crystallise falls below the
structural relaxation time.

Hypothesis — Kinetically Unstable Liquids. The con-
siderations we have outlined above lead us to pose the
following question. If we accept that the liquid state
becomes denser upon shortening the range of the inter-
action, we expect that two things will occur: the dynam-
ics of the liquid along the binodal will slow, (Figure 1,
‘KCI’) and the crystallisation time will fall. Can it be
that the crystallisation time of the liquid actually falls
relative to its relaxation time so much that it cannot
relax? This would suggest that, rather than being ther-
modynamically metastable, as is the case with C60 for
example [1], in fact we may regard the liquid as being
kinetically unstable. This would mean that while thermo-
dynamically stable liquids are found for longer interac-
tion ranges, one expects that somewhat shorter ranged
systems will exhibit long-lived metastable liquids, but
that very short-ranged systems such as those formed by
colloid-polymer mixtures will crystallise before the liq-
uid can relax. We recall that nearly identical behaviour
should be expected for a range of systems with short-
ranged attractions [45,46]. The aim of this paper
is to explore this hypothesis, which turns out to be
correct.

To test this hypothesis, our strategy is as follows. First
we estimate the density the liquid would have were it
stable. Remarkably, we encounter some very dense liq-
uids. We then determine the structural relaxation time in
those liquids. Finally, we investigate the stability of the
liquid i.e. the time it takes to crystallise. We find that,
even very close to criticality, the system is unstable to
crystallization. Even closer to criticality we find the struc-
tural properties of the liquid are non-stationary on the
timescale of structural relaxation. In our discussion, we
note the relevance of our findings in the context of the
recent controversy in water [47–53].

Before proceeding we consider what is meant by such
a kinetically unstable rather than a (thermodynamically)
metastable liquid. Clearly, the kinetically unstable liquids
are, like the metastable liquids, not thermodynamically
stable. To identify kinetically unstable liquids, we shall
use the working definition that significant change in the
liquid must take place on the timescale of the structural
relaxation time τα . We will monitor structural properties
so the extreme case is that the liquid crystallises, but we
shall also consider other measures i.e. structural changes
while the system nevertheless remains amorphous. We
make the arbitrary criterion that 10% of the system must
be identified as crystalline for ‘significant’ crystallization
to occur. We observe that once 10% of the system is
identified as crystalline, apart from small fluctuations,

the fraction of crystal always increases, so our findings
are qualitatively insensitive to reasonable changes to this
threshold value of 10%.

2. Simulationmethods

Throughout we employ the DynamO event driven
molecular dynamics package [55]. We consider the
square well model

βuSW(r) =

⎧⎪⎨
⎪⎩

∞ for r < σ

−βεsw for σ ≤ r < σ(1 + qsw)

0 for σ(1 + qsw) ≤ r,
(1)

where β = 1/kBT, σ is the diameter εsw is the well
depth and qsw is the interaction range. In our system, we
consider five equimolar species of identical mass. This
enables us to mimic a polydisperse system. The polydis-
persity δ we tune to suppress crystallization as follows (in
units of σ ): δ = 0.08 : {0.888, 0.9573, 1.0, 1.043, 1.112};
δ = 0.12 : {0.832, 0.936, 1.0, 1.064, 1.168}; δ = 0.16 :
{0.776, 0.9147, 1.0, 1.085, 1.224}. Our unit of time is√
mσ 2/kBT wherem is the mass of each particle. We set

kBT = 1 [55].
System sizes varied from N=1372 to N=10976 as

described. We fix the interaction range of the square well
potential at qsw of the mean of two interacting particle
diameters. We estimate the critical temperature using the
results of Largo et al. [54] and interpolate their values to
our choice of qsw = 0.06. This gives a critical temperature
Tc ≈ 0.384 and critical volume fraction φc = 0.2662.We
characterise the proximity to criticality with the reduced
temperature

ε = |T − Tc|
Tc . (2)

To calculate the liquid–vapour binodal we set N=4000
and checked some state points with a larger system size
of N=10976. For determination of the relaxation time
τα we set N=1372 and equilibrated for at least 10τα in
the NVT ensemble before sampling for at least a fur-
ther 10τα in the NVE ensemble, except for the deep-
est quenches (T=0.333, ε = 0.132) where we equili-
brate for 5 × 105 time units and sample for a further
5 × 105 time units. In the case of the crystallization of
monodisperse systems, N=10976, except for the deep-
est quench where N=1372. Our choice of ensemble is
here motived by work by Berthier et al. [56,57] and is
common practise for simulations of supercooled liquids
[58,59].

To analyse the local structure and detect crystalliza-
tion, we identify the bond network using the Voronoi
construction with a maximum bond length of 1.4σ . Hav-
ing identified the bond network, we use the topological
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cluster classification (TCC) to decompose the system into
a set of local structures which include FCC and HCP
local crystalline environments of 12 neighbours around
a central particle [60]. The amorphous local structures
we identify in addition to the crystalline environments
are minimum energy clusters for potentials of varying
range [61], which include many topologies in the limit
of vanishingly small interaction range [62].

3. Results

Our strategy to investigate the lifetime of the liquid is
to determine the binodal the system would have in the
absence of crystallization. To do this, we consider liq-
uid–vapour phase separation in a weakly polydisperse
system. The polydispersity is chosen to be sufficient to
suppress freezing, and is varied so that we have some idea
of any change in the binodal related to the polydispersity
itself. This turns out to be small, so we choose to treat the
polydisperse system as if it were themonodisperse system
of interest if the liquid were to be stable. We then calcu-
late the relaxation time of the liquid along the binodal.
Finally, we turn to themonodisperse system and consider
its freezing kinetics.

3.1. Estimating the liquid–vapour binodal

To determine the binodal we use a polydisperse system
to prevent crystallization. In our five-component system,
small systems (N � 500) can exhibit fluctuations to crys-
talline states [63], but for the system sizes we consider

here we have never observed crystallization when the
polydispersity δ ≥ 0.08 [23].

Our aim is to obtain the binodal of the coexisting liq-
uid and vapour and to proceed we followGodonoga et al.
[64]. In particular, we simulate a system close to the criti-
cal isochore and wait for it to demix. To minimise its free
energy, the system forms a slab of liquid and a slab of
vapour. We can then obtain the coexisting volume frac-
tions directly by fitting a hyperbolic tangent [23,64,65]
which approximately profile across the liquid–vapour
interface as a function of z. This reads

φ(z) = φ0 + 	φ tanh
(
z − z0

ξ

)
, (3)

where φ0 + 	φ is the volume fraction of the bulk liquid,
φ0 − 	φ is the volume fraction of the vapour and z0 is
the location of the interface and ξ is the interfacial width.
The average volume fraction between the vapour and liq-
uid is then φ0. Further details may be found in Ref. [64].
A typical fit is shown in Figure 2(b) inset. We neglect the
effects of partitioning of the composition into each phase.
That is, each phase may have different particle size distri-
butions [66]. For the systems we consider, we shall see
that the dependence of the binodal upon polydispersity
is not too severe.

In this way we construct the liquid–vapour binodal for
various polydispersities in Figure 2(a). The first observa-
tion is that the binodal is extremely flat. That is to say,
even very close to criticality (ε = 0.0699) the liquid is of
high density (φ ≈ 0.576) and therefore would crystallise
rapidly were these attractive spheres to behave like hard

Figure 2. Colour online. (a) Liquid–vapour binodal for the square well potential with range 6%. Shown are fluid (F), vapour (V∗) and
liquid (L∗) phases (see Figure 1 for a discussion of these phases). Here the critical point [54] is denoted as a white circle. Coexistence
is determined from measurements of densities in simulations where phase separation has completed (see text for details). Polydisper-
sity is used to suppress crystallisation, and here is varied from 8% (light cyan) to 12% (dark blue) and 16% (green). Two system sizes of
N= 10976 (triangles) and N= 4000 (circles) are shown. Inset shows data on the liquid branch. Solid lines are estimates of phase bound-
aries. (b) Angell plot of structural relaxation time for various polydispersities along the binodal. Since the data are plotted for state points
along the binodal, temperature is the control parameter, but these correspond to different densities (a). Solid line is a fit using the Vol-
gel–Fulcher–Tamman expression, Equation (6). Inset: Example fit to obtain coexisting liquid and vapour packing fractions. Solid line is the
hyperbolic tangent fit described in the text and points are data fromN= 10976 and δ = 12% for a temperature T = 0.3703, ε = 0.0355.
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spheres [39]. The second observation is that the effect of
varying polydispersity is not too significant here. Indeed,
only the inset which zooms in on the high-density region
shows any effect of polydispersity.

We therefore make the significant assumption that
we can neglect the effect of polydispersity upon the
liquid–vapour binodal and therefore that our method
enables us to estimate the phase boundary that the
monodisperse system would have were crystallization
not to intervene. This is indicated by the grey line in
Figure 2(a). To estimate the liquid packing fraction we
take the mean of our measured values. Note that because
our use of polydisperse liquids suppresses crystallisa-
tion we may access higher liquid volume fractions than
previous work [67].

3.2. Dynamics

Before we can discuss crystallization times, we need to
know the relevant timescale of the system. At these pack-
ing fractions, spheres undergo slow dynamics [27,38]. To
determine the structural relaxation time τα we calculate
the intermediate scattering function (ISF) which reads

F(k, t),= 1
ρ

〈| exp (
ik.[r(t + t′) − r(t′)]

) |〉, (4)

where k = 2πσ−1 is a wave-vector taken close to the
peak of the static structure factor and the angle brack-
ets indicate averaging over all particles. The location of
the particles is given by r. The structural relaxation time
is then obtained by fitting a stretched exponential to the
ISF

F(k, t) = c exp
[
−(t/τα)b

]
, (5)

where b is a stretching parameter. Now we cannot fully
equilibrate the deeper quenches (for ε � 0.102), so the
fit should be taken to be approximate only. Upon ageing,
τα typically increases [27,59,68]. Thus our values may be
taken as a lower limit for the relaxation time.We shall see
below that for such state points, crystallization proceeds
much faster than the relaxation time, so any underes-
timation of τα has no qualitative effect on our conclu-
sions. We combine our values for τα into the Angell
plot shown in Figure 2(b). The dependence on poly-
dispersity is small and the super-Arrhenius behaviour
is weak, i.e. that our system behaves as a rather strong
glassformer.

We note that the data for ε � 0.06 are well described
by a straight line, indicating an Arrhenius-like behaviour
in the relaxation time. This is somewhat surprising
because systems with spherically symmetric interactions
typically show a super-Arrhenius or fragile behaviour
[27,38]. However, we emphasise that the time-window

we access is rather limited. It is quite possible that
super-Arrhenius behaviour could be found upon deeper
quenching. We fit our data with the Vogel-Fulcher-
Tamman (VFT) equation,

τα = τ0 exp
[

D
T − T0

]
, (6)

where T0 corresponds to an ideal glass transition tem-
perature [27,38]. Other fits are possible [69], in particu-
lar, those fromMode-Coupling Theory (MCT). However
while these capture a dynamic range of up to around
four decades for ‘fragile’ glassformers [27,38], beyond
that without some kind of treatment to account for co-
operative relaxation, MCT fails to capture the dynamics
because in practise the system relaxes via mechanisms
not accounted for by the theory [27,70]. For systemswith
an Arrhenius-like behaviour, as is the case here, MCT
gives a poorer description of the data, only fitting around
one decade in time [71]. Here our purpose is merely to
useVFT as a fit, rather than to infer any physical interpre-
tation [38].We fit the data with fragility parameterD=3,
τ0 = 0.01 and T0 = 0.327 and neglect any difference in
τα as a function of polydispersity. In any case, little vari-
ation is seen for the polydispersities considered. We thus
assume the relaxation time of the monodisperse liquid is
given by Equation (6). One dynamical property we have
neglected is critical slowing. As Figure 2(b) shows, for our
parameters this is not observed, presumably because we
do not approach close enough to criticality for such an
effect to be significant or that due to the coupling to the
simulation box critical fluctuations are suppressed or that
it is not too severe at these short wave vectors we consider
(k = 2π σ−1).

3.3. Crystallization kinetics

Having determined the liquid–vapour phase behaviour
and the dynamics, we are now in a position to tackle
the hypothesis with which we opened this article. Is
the square well liquid with range qsw = 0.06 kinetically
unstable? In Figure 3(a) inset we show a typical crys-
tallization run for a monodisperse system of N=10,976
particles at on the binodal reduced temperature ε =
0.0699. The system shows behaviour typical of ‘spinodal
crystallization’, of continuous growth in the number of
particles identified in a crystalline environment, apart
from small fluctuations.

We define the crystallization time of the ith simula-
tion τ

(i)
x to be when 10% of the system is identified as

being either face centred cubic (FCC) or hexagonal close-
packed (HCP). Crystallization is of course stochastic so
we average across Nsim = 6 independent simulations to
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Figure 3. Colour online. Vanishing liquid stability. (a) Crystallization time as a function of reduced temperature ε in simulation time
units. The solid black line is to guide the eye, dashed grey line in (b) denotes τα . Inset: proportion of particles in crystalline environments
identified with the TCC as a function of time for a reduced temperature of ε = 0.0699. Shown are HCP (grey) and FCC (black) and total
crystal fraction.

define an averaged crystallization time

τx =
∑

i Nxτ
(i)
x

Nsim
, (7)

where Nx ≤ Nsim is the number of simulations which
successfully crystallised. With τx we consider the liq-
uid stability, which is shown in Figure 3(a). Here we
plot as a function of temperature the crystallization time
in simulation time units. Now the crystallization time
τx increases with cooling. At first sight, this is unusual,
compared to a typical liquidwhere it drops as the thermo-
dynamic driving force to crystallise increases with cool-
ing. However, the extent of the increase is not startling,
less than a factor of five, moreover the density increases
markedly as we move along the binodal. Compared to
the change in relaxation time (Figure 2(b)), the time to
crystallize changes little. We see in Figure 3(b) that when
we scale the crystallization time by the relaxation time,
τx/τα , the latter dominates strongly. Now we define the
liquid to be kinetically unstable where significant change
occurs on the timescale of τα . Clearly crystallization is
a significant change, and reference to Figure 3(b) shows
τx ≤ τα is satisfied for ε � 0.045. Thus only for sys-
tems closer to criticality than ε ≈ 0.045 might the liquid
be considered to be metastable, in the sense that it is
expected to last around τα or longer.

We now consider such a case (ε = 0.0355). This is the
state point closest to criticality we access and we see in
Figure 3(b) that here the crystallization time τx = 6.74τα .
Let us probe this state point in more detail to see if it
changes on shorter timescales t ∼ τα . A change in the
structure of a non-equilibrium liquid on times greater
than the structural relaxation time is not itself surpris-
ing: to fully relax a supercooled liquid, it is known that
one may need to wait for hundreds of relaxation times

Figure 4. Colour online. Structural analysis of the liquid at ε =
0.0355. Shown are minimum energy clusters with 10, 11, 12 and
13 members, along with FCC and HCP environments.

[27,58,59]. To investigate the behaviour of the liquid,
we plot amorphous structures identified by the TCC, in
addition to crystalline environments. These local struc-
tures are topologically identical tominimum energy clus-
ters for short-rangedMorse potentials withm=10,11,12
and 13 particles [61] and are illustrated in Figure 4. They
consist of a defective icosahedron (a full icosahedron of
13 particles missing three) with C3v symmetry, m=10;
C2v , m=11; D3h, m=12 and a bicapped pentagonal
prism (D5h symmetry), m=13. We focus on these clus-
ters as they are reasonably prevalent and large enough
to provide a sensitive probe of any change in liquid
structure than smaller clusters which whose population
approaches 100% in liquids [60].

Considering the population of these clusters, over the
timescale of τα , we see there is a significant change in the
population in each case, including the population of par-
ticles in local crystalline environments, which increases
throughout. Thus we see that, even in the case when the
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liquid exhibits crystallization on timescales somewhat in
excess of its relaxation time, nonetheless it is not in a sta-
tionary state prior to crystallization. This is reasonable
as to prepare this state point the system is rapidly com-
pressed from a low density fluid, so some time to equili-
brate is expected.We conclude from Figure 4 that even at
this state point very close to criticality, we cannot observe
a liquid whose properties are stationary on the relax-
ation timescale τα . Furthermore, while the 10-membered
defective icosahedron is incompatible with crystalliza-
tion due to its fivefold symmetry, crystallization can
occur via transient states such as the 12-membered clus-
ter depicted in Figure 4 [41]. Its rise in population may
thus be a precursor to crystallisation.

4. Discussion and conclusions

We began this article with the following premis. Upon
reducing the range of their attractions, systems with
spherically symmetric interactions no longer exhibit a
thermodynamically stable liquid state, but the liquids that
are found constitute long-lived metastable states. Given
that the density of liquids, at a given temperature relative
to criticality, increases as the interaction range drops, and
noting observations of rapid crystallisation at high den-
sity, we argued that theremay be an interaction range suf-
ficiently short that the liquid becomes kinetically unstable
rather thanmetastable. That is, it is impossible to observe
a liquid with stationary properties.We take the structural
relaxation time τα as a timescale, and enquire whether
the liquid is stationary on that timescale. In particular, we
find that significant crystallization (10% of the system in
a crystalline environment) takes place on this timescale
except very close to criticality with reduced temperature
ε � 0.045.

Interrogating state points even closer to critical-
ity (ε = 0.0355), we see that although the liquid lasts
marginally longer than τα , its structure changes on a
timescale of τα . We thus conclude that none of the state
points we sampled exhibits a stationarymetastable liquid.
And yet the system considered has a well-defined criti-
cal point [54]. Presumably closer to criticality, the time
to crystallise would increase, so that it would be possible
to access the liquid, and perhaps even the higher-order
amorphous structure we have probed would appear sta-
tionary. However, simulating such a system even closer
to criticality is not trivial. Although finite-size scaling has
been developed, enabling a precisemapping onto 3d Ising
universality [72], this does not reveal all the properties
of the system, which may be asymmetric for example.
Appealing to brute-force simulation can be problem-
atic, due to divergent lengthscales of the density correla-
tions, so that the structural correlation length can become

comparable to the box size. For typical simulation system
sizes of N=10,000 particles, the box size is of order ten
particle diameters, this limits the approach to criticality
to ε ≈ 0.1.

Experiments on, for example, colloid-polymer mix-
tures are not affected by these concerns. However, they
are not without their pitfalls. This is due to the necessity
to prepare a new sample for each state point which thus
far has limited the approach to criticality to ε ≈ 0.003
[73]. Even innovations to continuously vary the effective
temperature via the use of gravity [74] or temperature
[75] are hampered by challenges in equilibration close
to criticality. Moreover, colloids are much more sluggish
than molecules and so critical slowing can make equili-
bration all but impossible on experimental timescales.

Here we have considered the qsw = 0.06 square well,
but it is reasonable to suppose that shorter interaction
ranges still might be even less kinetically stable.We chose
this square well model so that there would be some
range where we could determine the structural relax-
ation time. In the case of denser (less kinetically stable)
liquids likely to be encountered with shorter interaction
ranges, it would be challenging to quantify τα due to
the long relaxation timescales, and thus hard to test for
stability.

We close by noting the recent controversy in water,
concerning the existence of otherwise of a second liq-
uid [47–53]. Our system has a well-defined critical point
[54], but we have shown that even close to criticality
(ε = 0.0355), the liquid is kinetically unstable.We expect
that, very close to the critical point, the liquid might be
metastable, and observable on timescales longer than the
structural relaxation time. Without entering into a dis-
cussion of how easy this might be in the case of water,
we suppose that if a critical point can be shown to exist,
then it is reasonable to say there is a liquid. However,
such a quiescent liquid with stationary properties may be
impossible to access in simulation or indeed in experi-
ment. Thus the inability to obtain a stationary liquid does
not rule out the proximity of a critical point.
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