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Abstract. In trajectory space, dynamical heterogeneities in glass-forming liquids correspond to the emer-
gence of a dynamical phase transition between an active phase poor in local structure and an inactive
phase which is rich in local structure. We support this scenario with the study of a model additive mixture
of Lennard-Jones particles, quantifying how the choice of the relevant structural and dynamical observable
affects the transition in trajectory space. We find that the low mobility, structure-rich phase is domi-
nated by icosahedral order. Applying a non-equilibrium rheological protocol, we connect local order to the
emergence of mechanical rigidity.

1 Introduction

Supercooled liquids show emergent dynamical and struc-
tural heterogeneities when cooled towards the glass transi-
tion [1–3]. The relation between slow dynamics and some
form of short-range (local) order, however, is still poorly
understood. On the one hand, the efficient filling of space
with atoms of different sizes requires a certain degree of
topological order [4] and the dynamic slowdown can rigor-
ously be linked to emerging static lengthscales [5]; on the
other hand, computer simulations have shown that the
correlation between local structural features and slow dy-
namics is strongly model dependent [6,7]. In experiments,
colloidal [8–11] and metallic glasses [12–14] provide evi-
dence for emerging local order as well as, on the contrary,
support for purely dynamical scenarios where local struc-
ture has limited influence on the dynamics [15, 16]. His-
torically, the study of local structure with complex higher-
order metrics has played a decisive role in understanding
amorphous systems and packings since the times of Bernal
and Finney [17–20] and has contributed to a geometric and
thermodynamic interpretation of the emerging frustration
in glasses [21, 22]. However, alternative approaches which
disregard structural features and focus on dynamical [23]
or vibrational/elastic aspects [24] of the problem or relax-
ation have been proposed, in striking contrast with the
established thermodynamic theories of the glass transi-
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tion [25,26]. It is therefore important to understand what
drives strong or weak coupling between structure and dy-
namics in different supercooled liquids.

A major difficulty encountered in the investigation of
the role of structural changes in dynamic arrest is the
fact that particle-resolved studies (and in particular con-
ventional computer simulations) can only access a lim-
ited dynamic range of slow relaxation. Typically, this en-
compasses 4 to 5 orders of magnitude in time, mean-
ing that such studies mainly capture the onset of the
mechanisms that characterise the deeply supercooled and
glassy regimes (when the relaxation times are 10 to 20
orders of magnitude larger with respect to the liquid
regime) [27]. Therefore, alternative sampling routes to
explore the deeply supercooled regime from a structural
and/or dynamical point of view have been developed in re-
cent years, including pinning fields [28–30], particle-swap
Monte Carlo on particular models [31, 32] or biased dy-
namical ensembles [23,33–35].

A potential route to study dynamical and structural
heterogeneities in glassformers is provided by efficient
sampling methods in trajectory space, where novel dy-
namical phase transitions have been uncovered and con-
nected to the dynamical slowdown observed in super-
cooled liquids [23]. The study of trajectory space in
glassy systems has been originally promoted in the con-
text of the dynamical facilitation theory of slow dynam-
ics [33, 36, 37]. Within this framework, on-lattice ide-
alised models [36, 38–40] as well as more realistic mod-
els of structural glasses [33,34,41–43] have been shown to
undergo a first-order dynamical phase transition in tra-
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jectory space between an active phase with high mobility
(fast relaxation) and an inactive phase with low mobility
(slow dynamics).

However, this purely dynamical picture has been
more recently complemented by a structural aspect:
active/inactive phases correspond to trajectories partic-
ularly poor/rich in local structure [44, 45] and can be
seen as representative of the low-temperature state of the
supercooled liquid [35]. Dynamical transitions are there-
fore understood to correspond to a structural-dynamical
transitions, where the slowdown of the dynamics becomes
intimately related to the growth of short-range-order
domains.

Still, much of the evidence for structural-dynamical
phase transitions in atomistic models of glassformers up
to now is restricted to only two model systems (the Kob-
Andersen mixture [33–35,41,44], a popular Lennard-Jones
mixture with weak structural-dynamical correlations [46],
and the moderately polydisperse hard spheres [45]). In
order to understand how system-dependent this picture
is, it is important to extend the scope of these studies to
other model systems.

In the present numerical work, we consider the case of
a popular atomistic glassformer originally introduced by
Göran Wahnström as a simple model for supercooled liq-
uids [47]. It consists in a binary mixture of Lennard-Jones
particles whose parametrization has been found to provide
a good model of fragile glasses, with a particularly strong
coupling between its slow dynamics and the emergence of
local geometrical motifs [7, 46, 48, 49]. These are typically
icosahedra, a very common arrangement in simple models
of glass-forming liquids composed of spherically symmet-
ric particles.

The article is structured as follows: in sect. 2 we
present the model studied and the importance sampling
technique employed for trajectory sampling; in sect. 3 we
introduce the relevant observables and the phase tran-
sitions in trajectory space that can be probed through
the dynamical s-ensemble and the structural-dynamical μ-
ensemble; in sect. 4 we show that it is possible to connect
the structural-dynamical transition to the emergence of
rigidity in the glass, as the icosahedra-rich phase presents
distinctive rheological properties; finally, we conclude the
article with an overview of the results and their implica-
tions.

2 Model and sampling technique

2.1 The Wahnström binary mixture

We study the Wahnström binary mixture of Lennard-
Jones particles. The model is a 50:50 mixture of large (A)
and small (B) particles with parameters σA/σB = 1.2,
mA/mB = 2, εA/εB = 1 and cutoff rcut = 2.5σ at number
density ρ = 1.296. Lengths, temperature and times are
reported in units of σA, εA/kB , and (mAσ2

A/εA)1/2, re-
spectively. The mixing rule for the interaction is additive,
i.e., it follows the Lorentz-Berthelot rules

σAB =
σA + σB

2
, εAB =

√
εAεB . (1)

Fig. 1. (a) Structural relaxation time τα (circles, logarith-
mic scale) and population of particles in icosahedral motifs
n (pentagons, linear scale) as a function of the inverse tem-
perature. Continuous lines are the Vogel-Fulcher-Tammann
(VFT) fit ln τα/τ∞ = DT0/(T − T0) and an empirical n =
[1 + (T/T1/2)

γ ]−1 fit for τα and n, respectively, with γ = 6.6,
T1/2 = 0.47 from ref. [50]. Vertical lines also indicate the lo-
cation of relevant temperatures in the Wahnström model: the
onset of slow dynamics Tonset, the mode-coupling transition
temperature TMC and the VFT temperature T0. (b) Three-
dimensional rendering of the four local motifs considered in
this work: the icosahedron, the defective icosahedron (10B)
and two nine-particle motifs unrelated to five-fold symmetry.
For the icosahedron and 10B, a pentagonal ring of particles is
highlighted in gold.

This atomistic supercooled liquid has been extensively
studied since its original design [47]. The model repro-
duces to a good degree the relaxation behaviour of so-
called fragile glasses, as its structural relaxation time τα

(as measured from the decay of the intermediate scat-
tering function [48]) undergoes a non-Arrhenius (super-
exponential) increase when the system is cooled below the
crossover or onset temperature Tonset = 1.0 [48, 51]. Fur-
thermore, as the temperature is decreased, the disordered
structure of the liquid changes with the formation of five-
fold symmetric domains and in particular of local parti-
cle motifs with icosahedral coordination [48,51,52] which
contribute to the emergence of strong frustration [53].
Equilibration of the liquid in conventional simulations
around and below the so-called mode-coupling temper-
ature TMC = 0.56 is computationally expensive, making
the low temperature, activated regime (crucial for test-
ing theoretical predictions [2]) unreachable. Divergence of
the relaxation times, if modelled by the super-Arrhenius
Vogel-Fulcher-Tamman law ln τα/τ∞ = DT0/(T − T0), is
predicted at temperature T0 ≈ 0.46. For reference, we re-
port in fig. 1(a) the temperature dependence of both the
structural and dynamical properties of the model.
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Beyond local structural order, the model has been
shown to crystallise, under suitable conditions, into a
MgZn2 Laves phase formed by icosahedral motifs and so-
called Frank-Kasper bonds [54] but in the supercooled liq-
uid regime the contribution of such a large unit cell to the
increased degree of local order has been shown to be lim-
ited [48].

2.2 Replica exchange in trajectory space

As in previous work [34,35,44,45], in order to sample large
fluctuations of the time-integrated observables we employ
an importance sampling technique that extends equilib-
rium replica-exchange methods to ensembles of trajecto-
ries.

We sample space and time extensive observables Ox on
systems of N = 512 evolving for a finite observation time
tobs. A generic time-integrated observable Ox is defined
as a double sum over the number of particles and a dis-
cretization of time into L intervals for a total of K = L+1
points:

Ox =
+L/2∑

t=−L/2

N∑

i=1

ft,i, (2)

where ft,i is a specific microscopic observable (e.g., a single
particle indicator function).

The goal of the importance sampling technique is to
efficiently measure the probability distribution P (Ox;Ts)
for a given value of the thermostat temperature Ts. In
particular, we are interested in the large deviations from
the typical value of the probability distribution. In order
to calculate such rare fluctuations in trajectory space, new
trajectories are generated through shifting and shooting
moves (inspired by Transition Path Sampling [55]). Hence,
the algorithm performs a random walk in trajectory space
with acceptance probability determined by a Metropolis
rule

pacceptance = min
{

1,
e−Ψ(Onew

x )

e−Ψ(Oold
x )

}
, (3)

which ensures detailed balance and where Ψ(Onew
x ),

Ψ(Oold
x ) are the values of a biasing pseudo-potential which

is a function of the extensive observable Ox computed over
old and new trajectories. We choose Ψ to have a parabolic
form

Ψj(Ox) =
1
2
ω(Ox − Oj

0)
2, (4)

where Oj
0 is the reference (typical) value associated to

replica j. Depending on the observable, we take a num-
ber of distinct replicas varying from 8 to 16, with equally
spaced values of Oj and values for the harmonic constant
ω that ensure good mixing of neighboring replicas. Mix-
ing is also enhanced by 2500 swap attempts among all
(not-necessarily neighboring) replicas.

The Monte Carlo algorithm in trajectory space simu-
lation starts with an equilibrated trajectory assigned to
all replicas at temperature Ts. A new trajectory is then
generated via Transition Path Sampling moves (1/4 shift-
ing, 3/4 shooting [55]) independently for every replica,

Fig. 2. Example of a Monte Carlo run in trajectory space.
At temperature Ts = 0.71 we collect trajectories for the time-
integrated number of icosahedra from 12 distinct replicas cor-
responding to the different colours. A very long transient of
6 · 104 Monte Carlo cycles (vertical dashed line) is observed
and statistically relevant data are only collected from the re-
maining 4 · 104 trajectories.

accepted or rejected according to eq. (3). Swap attempts
between different replicas are then performed, complet-
ing the cycle. During the sampling, we employ a velocity-
Verlet integrator with timestep dt = 0.005 to resolve the
equation of motion and the Andersen thermostat to keep
the temperature constant.

We perform several tens of thousands of cycles and
collect statistics and block averages from three to eight
non-overlapping blocks of data whose size ranges between
1.2 · 104 and 3 · 104 trajectories, which deliver estimates
for the averages and standard errors. Crucially, depending
on the sampling temperature Ts, correlations may be very
long-lived and the number of Monte Carlo cycles spent
during the equilibration in trajectory space can be very
large ((∼ 6 · 104) Monte Carlo sweeps), as shown in fig. 2.
We then discard trajectories produced during equilibra-
tion and collect data from the converged, late steps of the
Monte Carlo.

From the collected ensemble of trajectories, we calcu-
late distributions and expectation values using the Mul-
tistate Bennett Acceptance ratio (MBAR) method ex-
tended to ensembles of trajectories [56]. This technique
allows us to obtain the unbiased probability distribution
P (Ox;Ts) and expectation values for any quantity A as

〈A〉y =
〈AeyOx〉
〈eyOx〉 , (5)

where y is the conjugated field to the observable Ox and
〈 〉 indicate averages according to the unbiased distribu-
tion P (Ox;Ts). Notice that the denominator in eq. (5)
corresponds to the moment generating function of the
probability distribution and is a generalization of the par-
tition sum to trajectory spaces. In this work, we focus on
two particular ensembles: the s-ensemble, where y = −s
and the observable Ox is the time-integrated mobility of
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the particles; and the μ-ensemble, where y = μ and the
relevant observable is a time-integral over the number of
particles in a particular local motif (here the icosahedron).

In the presence of transitions in trajectory space, we
expect to measure probability distributions for the time-
integrated observables that are not Gaussian and dis-
play long, eventually exponential tails. For variables that
follow a Gaussian probability distribution, the kurtosis
κ4 = 〈(Ox − 〈Ox〉)4〉/〈(Ox − 〈Ox〉)2〉2 (i.e., the ratio be-
tween the fourth central moment and the squared second
moment) has value κ4 = 3. Therefore, the excess kurtosis
κexc = κ4−3 is often employed as a benchmark for the de-
viations from a Gaussian distribution. So-called leptokur-
tic (fat-tailed) distributions correspond to positive κexc

while platykurtic (thin-tailed) distributions correspond to
negative κexc.

3 Dynamical and structural phase transitions

3.1 Observables

We analyse the emergence of phase transitions in trajec-
tory space by monitoring a variety of observables. We
perform importance sampling in trajectory space accord-
ing to time-integrated observables that are either dynam-
ical (such as the mobility excitations) or structural (a
selection of geometrically different structural motifs, see
fig. 1(b)). Furthermore, in order to relate the trajectory-
space picture back to the thermodynamic picture, we also
monitor the inherent state energy of the selected config-
urations, whose statistics in the trajectory ensemble has
been proven to closely reproduce the equilibrium prop-
erties. Structures are detected employing the Topological
Cluster Classification algorithm and we refer to ref. [57]
for a more detailed discussion of the geometries considered
here.

In particular, for the time-integrated quantities we
have:

– Number of excitations: to quantify the number of mo-
bile particles, we compute the observable

Oexcitation =
L/2∑

t=−L/2

N∑

i=1

|Θ(Δri(t) − a)|, (6)

where Δri(t) = ri(t)− ri(t−Δt) is the single-particle
displacement, Θ is the Heaviside function and a is a
scale for cage motion, here set to a = 0.3σlarge.

– Number of particles in icosahedral motifs: given the
important role of icosahedral order in the Wahn-
ström mixture, we track this specific local motif
along the trajectories. Additionally, we perform im-
portance sampling according to the number of icosa-
hedra. The corresponding time-integrated extensive
structural-dynamical observable is then

Oico =
L/2∑

t=−L/2

N∑

i=1

hico
i (t), (7)

where hico
i is an indicator function, which takes value 1

if a particle is found in an icosahedral environment or
0 if it is not. With a certain abuse of language, we will
interchangeably refer to the population of icosahedra or
the population of particles in icosahedral motifs when
considering the intensive quantity Oico/NK.

– Number of particles in 9A motifs: we compute O9A

performing the summation as in eq. (7), but with a
different indicator function h9A

i . In this case, we con-
sider the 9A structure of the Topological Cluster Clas-
sification, which is composed of six particles combined
to form three four-folded rings, surrounded by three
further spindle particles on each quadrangular facet
(forming a tricapped trigonal prism). According to pre-
vious studies [48], we do not expect this motif to be a
good predictor of structural-dynamical heterogeneity
for the Wahnström mixture. However, in the case of
other simple liquids dominated by five-fold symmet-
ric local order, such as moderately polydisperse hard-
sphere, 9A motifs have been shown to be complemen-
tary to local icosahedral order, becoming less frequent
when the packing fraction (and the population of icosa-
hedra) increase [58].

– Number of particles in BCC motifs: as a further test,
we compute the time-integrated observable OBCC con-
sidering a nine-particle structure that (weakly) corre-
lates with body-centered-cubic local order and anti-
correlates strongly with icosahedral and five-fold sym-
metric order.

– Number of particles in five-fold symmetric motifs: fi-
nally, to track five-fold symmetric local order that is
not fully icosahedral, we consider the defective icosahe-
dron structure 10B, composed of three interlaced pen-
tagonal rings. This structure is characteristic of hard-
sphere mixtures, and has been shown both in simu-
lations and experiments to drive a clear structural-
dynamical phase transition [45].

We also measure a static observable, i.e. not time-
integrated. This is the inherent state energy (ISE) of con-
figurations located at the centre of each trajectory, chosen
in order to avoid finite-time effects on the statistics [59].
Inherent state energies are obtained minimising the poten-
tial energy of the system for a maximum of 1000 iterations
of the FIRE algorithm [60].

3.2 s-ensemble

First, we consider the response of the system to a dy-
namical bias. This means that we collect trajectories ac-
cording to the observable Oexc, i.e. the time-integrated
number of mobility excitations. We employ the large de-
viation formalism and notation, and we define s as the
dynamical conjugate field related to the excitations, so
that positive/negative values of s correspond to atypi-
cally small/large densities of mobility excitations, hence
the name of s-ensemble [36]. As we sample the mobil-
ity large deviations, we track all the other dynamical and
static order parameters.



Eur. Phys. J. E (2018) 41: 54 Page 5 of 12

Fig. 3. Probability distributions for dynamical trajectories of the Wahnström model of duration K = 20 at temperature
T = 0.67. The several observables x are: the time-integrated population of mobility excitations, the inherent state energy (ISE)
of the central configuration of every trajectory, and the time-integrated population of particles in icosahedral motifs, 9A motifs
and 10B motifs. The blue, green, yellow and red datasets refer to trajectories of length K = 20, 40, 60, 100, respectively. The
dashed black lines are fits to a Gaussian probability distribution centred at the peak value.

Table 1. Expectation values for the mean, the variance and the excess kurtosis κexc for several observables as measured via
trajectory sampling for different values of the trajectory length at temperature Ts = 0.67.

Excitations 13A 10B 9A BCC9 ISE

K (Mean, Variance, κexc) (Mean, Variance, κexc) (Mean, Variance, κexc) (Mean, Variance, κexc) (Mean, Variance, κexc) (Mean, Variance, κexc)

20 0.09, 0.0005, −0.04 0.09, 0.0007, 0.5 0.6, 0.002, −0.1 0.07, 7e-05, −0.06 0.7, 0.0003, −0.5 −7, 0.0008, 0.02

40 0.1, 0.0003, −0.08 0.09, 0.0006, 0.8 0.6, 0.001, 0.1 0.07, 4e-05, 0.08 0.7, 0.0002, −0.5 −7, 0.0008, 0.003

60 0.1, 0.0003, −0.03 0.09, 0.0005, 0.9 0.6, 0.001, 0.2 0.07, 3e-05, 0.06 0.7, 0.0002, −0.4 −7, 0.0007, −0.03

100 0.1, 0.0002, 0.1 0.09, 0.0004, 2.0 0.6, 0.0008, 0.6 0.07, 2e-05, 0.07 0.7, 0.0002, −0.3 −7, 0.0007, −0.005

In fig. 3 and in table 1 we summarise our findings for
a particular thermostat temperature Ts = 0.67Tonset ≈
1.2TMC, where TMC and Tonset indicate the transition tem-
perature predicted by the power-law fit to the relaxation
of the mode-coupling theory and the onset of the two-
step relaxation dynamics, respectively. In fig. 3 we com-
pare the (scaled) logarithm of the probability distribu-
tions (i.e., the rate function) of the considered observ-
ables Ox for increasing values of the trajectory length
tobs = 1.9, 3.8, 5.7, 9.5τα (K = 20, 40, 60, 100). At the con-
sidered temperature, we expect to observe deviations from
Gaussian fluctuations in the tails (i.e., large deviations) of
the probability distributions. With this comparative anal-
ysis, we want to stress that the choice of the observable is
non-trivial and different observables present characteristic
features.

First we notice that the population of excitations
(which is the reaction coordinate along which we perform
importance sampling) shows mostly Gaussian fluctuations
around the mean value 〈Ox〉/KN = 0.096(2) for all the
sampled trajectory lengths. However, the variance com-
puted at different trajectory lengths appears to slowly
converge to smaller values, with the tails of the probabil-
ity distributions gradually narrowing. This indicates that
very short trajectories of length tobs = 1.9, K = 20 are
affected by finite-size effects that enhance the observation
of large fluctuations.

Higher-order moments converge even more slowly but
point to the emergence of non-Gaussian features. For ex-
ample, the excess kurtosis is negative for short trajectories

and becomes mildly positive for the longest trajectories
K = 100. This underlines that even longer trajectories
are needed to obtain more marked signatures of a dynam-
ical phase transition in terms of the population of excita-
tions at the relatively high temperature considered here,
with a non-negligible increase of the computational cost.
Notice that it is only in the long time limit that a large
deviation principle holds and rate functions converge [61],
and therefore it is only in this limit that a formal phase
transition in trajectory space is expected.

Given the weak response in the mobility excitations,
what signatures do we observe in the other observables
measured on the same trajectories produced in the s-
ensemble? In the following, we analyse them one by one.

For the time-integrated population of particles in
icosahedral motifs, we observe that average values do not
depend on K; however, higher-order moments show a de-
pendence on the trajectory length. The values of the ex-
cess kurtosis κexc show a marked increase in non-Gaussian
features of the trajectory probability distribution, as con-
firmed by direct inspection of the probability distribution.
The excess kurtosis is positive (i.e., fat-tails) and goes
approximately from 0.48 to 2.0 when the trajectory length
increases from K = 20 to K = 100. For a comparison, no-
tice that for a common leptokurtic distribution of positive
random variables such as the Rayleigh distribution, the
excess kurtosis is κexc = −(6π2−24π+16)/(4−π)2 hence
κexc ≈ 0.24 showing that the distribution for the icosahe-
dra is even more leptokurtic. Compared to the response
of the mobility excitations, the time-integrated population
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of icosahedra provides a much stronger signature for a dy-
namical phase transition. In particular we observe that
populations of icosahedra of order 0.2 are only two or-
ders of magnitude less likely than the converged typical
value 〈Oico〉/NK = 0.09, with a strong exponential tail
in the probability distribution. Non-Gaussian fluctuations
are therefore stronger when tracking the time-integrated
population of icosahedra than in the case of excitations.

These results are consistent with the previous litera-
ture [46,48,53] where the role of icosahedral motifs as lo-
cally favoured structures (LFS) of the Wahnström mixture
has been discussed and their strong correlation with dy-
namical heterogeneities measured. They also confirm the
scenario originally suggested for another popular glass-
former (the Kob-Andersen mixture), whereby trajectories
sampled according to time-integrals of the LFS delivered
stronger signatures for a dynamical transition than mo-
bility excitations [34,35].

An icosahedral motif is detected in the TCC via the
combination of seven five-fold symmetric rings [57], and
the statistics of the number of icosahedra appears to
strongly indicate the presence of non-Gaussian fluctua-
tions related to a structural-dynamical phase transition
in the system. How does such transition change if we
take into account a less restrictive observable that still
identifies five-fold symmetry? To answer this question,
we consider the so-called defective icosahedron structure
10B (see sect. 3.1 above). We first notice that the aver-
age population of particles in 10B per trajectory is much
larger than the population of icosahedra (0.59 vs. 0.089)
and the variance again slowly converges with increasing
tobs. However, the excess kurtosis is much smaller in ab-
solute values, changing sign from negative towards pos-
itive values (leptokurtic distributions) as the trajectory
length is increased. This matches the dynamical notion
of locally favoured structures: icosahedra are not only the
minimum energy structure for the Wahnström interaction,
they also are the individual motif (among the several op-
tions of the Topological Cluster Classification) that dis-
plays the longest persistence time [48]. The indicators for
a structural-dynamical transition in terms of 10B motifs
are much weaker than in the case of icosahedral order.
Yet, they confirm that the inactive (low population of ex-
citations) regime is dominated by long-lived five-fold sym-
metric motifs.

Is it possible to detect signs of the transition in other
structural observables? We consider the two exemplary
cases of the 9A and BCC9 structures. These motifs both
correspond to arrangements of 9 particles with different
symmetries which are not minimum energy clusters of the
potential. The average populations of the two motifs are
very different (∼ 0.07 for 9A and 0.74 for BCC9). The 9A
probability distribution is well approximated by a Gaus-
sian for all the trajectory lengths considered here, and the
corresponding excess kurtosis are (in absolute value) the
smallest among all the considered structures. The BCC9
motif, conversely, presents relatively large but negative ex-
cess kurtosis, indicating that the tails of the distributions
decay more rapidly than in the case of a Gaussian distri-
bution.

Fig. 4. Dynamical transition at Ts = 0.67 for trajectories of
length K = 60. Excitations and icosahedra clearly anticorrelate
while mobility and inherent state energies correlate. BCC9 and
9A structures are negatively correlated with the icosahedra
while the five-fold symmetric 10B are positively correlated.

For a given trajectory length, we consider the s-
ensemble averages as a function of the field s to highlight
correlations and anticorrelations between the observables.
With trajectories of length K = 60, we show in fig. 4 that
for negative s � 0 we sample trajectories characterised
by large densities of excitations (active phase) while for
s � 0 we have trajectories with low densities of excita-
tions (inactive phase). These correspond, respectively, to
trajectories that are poor and rich in icosahedra. The an-
ticorrelation between mobility and five-fold symmetry is
reflected also in the negative correlation between mobility
and 10B structures. On the other hand, mobility positively
correlates with the remaining motifs (9A and BCC9).

Finally, we consider how the active/inactive transition
is translated in terms of the energy landscape of the sys-
tem. To do so we also track the inherent state energy (ISE)
of the central configuration of every single trajectory and
plot the corresponding probability distribution. This (as
expected) does not show a dependence in the trajectory
length and it is well reproduced by a Gaussian fit, see
fig. 3. Normal fluctuations are confirmed by the analy-
sis of the respective excess kurtosis, which are by far the
smallest measured throughout our analysis (as small as
κexc = −0.003). In fig. 4, we do observe a transition to
trajectories whose central configurations display typically
much more negative energies with respect to the equilib-
rium typical value at s = 0. This is consistent with the
finding that in a different binary mixture (Kob-Andersen)
low mobility is a good predictor of low inherent state en-
ergies [59].

3.3 μ-ensemble

The direct route to access structural-dynamical phase
transitions is to sample trajectories according to a relevant
time-integrated structural observable. From the previous
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discussion, and in particular from the magnitude of the
non-Gaussian fluctuations as measured by the excess kur-
tosis, it is evident that icosahedral motifs are well suited
to this purpose.

Therefore we perform additional trajectory sampling
according to the time-integrated number of icosahedral
motifs. As in the case of the s-ensemble, we sample
trajectories following the replica-exchange scheme, with
quadratic pseudo-potentials for the replicas with suitable
spring constant ω.

In the new ensemble of trajectories, the conjugate field
related to the number of particles in icosahedral motifs is
termed μ. Consistently with previous works in the liter-
ature [34, 35], averages of any arbitrary quantity in the
μ-ensemble are defined as

〈A〉μ =
〈AeμOico〉
〈eμOico〉 . (8)

In the previous section, we have shown that in the
s-ensemble an emergent active/inactive transition is mir-
rored by a rapid increase of the population of particles
in icosahedral motifs. In the μ-ensemble we sample such
structural transition directly. In fig. 5(a), (b) we plot
the μ-dependence of the average mobility 〈Oexc〉μ/NK
and the average population of icosahedra 〈Oico〉μ/NK for
several thermostat temperatures Ts, from Ts = 0.72 to
Ts = 0.65. At different temperatures, we perform simula-
tions of different trajectory lengths tobs. Since the relevant
time-scale for the dynamics is the structural relaxation
time τα, we plot the first moments as a function of the
non-dimensional scaled conjugate field μτobs := μtobs/τα.
Just below the onset temperature we observe signs of a
phase transition at large μτobs between trajectories poor
in icosahedra with high mobility and trajectories rich in
icosahedra with low mobility. As we reduce the thermo-
stat temperature, the transition moves to values closer to
μ = 0. Through a spline fit and the estimate of the maxi-
mum in the derivative, we obtain the value μ∗τobs at which
the transition takes place.

The very small values of μ∗τobs at relatively high
temperatures compared to T0 obtained from the Vogel-
Fulcher-Tammann fit or the mode-coupling TMC temper-
atures suggest that trajectories with an exceptionally high
population of icosahedra should be highly likely, and sig-
natures of bi-modality in the probability distribution of
the time-integrated observables should become accessible
even to conventional simulations as the temperature is re-
duced.

In fig. 5(c), (d) we plot such probability distributions
both for μ = 0 and the critical value μ = μτ∗

obs, shift-
ing and rescaling the abscissa axis by the mean and the
standard deviation. We observe that, as temperature de-
creases, the structure-rich tail of the probability distribu-
tions raises of several orders of magnitude. Signs of bi-
modality are weak at low temperatures, due to the rel-
atively short observation time tobs, but clearer at higher
temperatures. Moreover, if we evaluate the probability dis-
tributions at coexistence μ = μ∗, fig. 5(d), a peak at high
population of structures emerges more clearly.
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Fig. 5. Structural-dynamical phase transition. (a), (b) Time-
integrated density of excitations (a) and of icosahedra (b) vs.
the rescaled conjugate field μτobs for different sampling tem-
peratures Ts. The observation time expressed in units of the
structural relaxation time μτobs = μtobs/τα is also reported.
(c), (d) Probability distributions of the population of icosahe-
dra per trajectory: (c) at μ = 0 and (d) at μ = μ∗(T ), shifted
by the mean value and the standard deviation σico in order to
highlight the tail behaviour.

The knowledge of μ∗τobs(Ts) allows us to draw an
approximate structural-dynamical phase diagram, fig. 6,
identifying the locus of points where the transition from
icosahedra-poor to icosahedra-rich trajectories occurs.
For the considered temperatures, we observe that most
of the data points lie on a straight line. An extrap-
olation of the line to μτobs = 0 would imply that
at temperature T = 0.64 coexistence between the two
structural-dynamical phases would be observable at μ = 0,
i.e. in conventional simulations with no need for im-
portance sampling. Previous numerical studies of the
model [48,62] managed to equilibrate the supercooled liq-
uid down to the temperature T = 0.58, with no signature
of a transition while decreasing the temperature, but with
a rapid increase of the population of icosahedra. This ex-
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Fig. 6. Structural-dynamical phase transition in the T -μ
plane. The dots correspond to the couples (Ts, μ

∗) determined
from trajectory sampling.

cludes the possibility of a transition at μ = 0 for at least
T > 0.58. As discussed in [35], several alternative scenar-
ios can be obtained with different extrapolations at low
temperatures, including ones where the transition asymp-
totically reaches μ = 0 only in the T → 0 limit [63]. Here
we notice that as we reduce the temperature, the critical
field μ∗τobs is reduced by progressively smaller amounts
for the successive temperatures. Lower-temperature sam-
pling is partly hindered by the long convergence times of
the Monte Carlo run in trajectory space, see fig. 2.

In the icosahedra-rich regime, approximately 50% of
the particles can be found in a local icosahedral envi-
ronment. However, a complex unit cell formed by several
icosahedra and Frank-Kasper bonds has been shown to
drive the system towards crystallisation [54]. We check
this possibility by monitoring the concentration of Frank-
Kasper bonds, here defined as pairs of large A particles
surrounded by six common B particles. In fig. 7 we plot
the average fraction of particles involved in Frank-Kasper
bonds for the increasing reference concentration of icosa-
hedra Oj

ico in the replica-exchange scheme at an exemplary
temperature Ts = 0.67. We observe a rapid increase in the
number of Frank-Kasper bonds as we consider replicas
with very high concentrations of icosahedra. This is con-
sistent with the overall behaviour of the Wahnström su-
percooled liquid at low temperatures, where Frank-Kasper
bonds are very common [54]. However, in order to form a
crystalline phase, four-fold Frank-Kasper bonds between
the large particle species are necessary. If we focus on the
fraction of A particles in four-fold bonds, this increases
very mildly across all of the replicas, and stays below 5%
in the highest bias replica, excluding crystal formation in
the icosahedra-rich phase.

In conclusion, both the s and the μ-ensemble calcula-
tions provide evidence for an inactive and icosahedra-rich
dynamical phase that becomes progressively more likely
to be observed for T < Tonset, an interplay between struc-
ture and dynamics similar to what has been observed in
other model systems [34,35,45,64,65]. We now study the

Fig. 7. Analysis in terms of Frank-Kasper (FK) bonds for a
representative temperature Ts = 0.67. The fraction of parti-
cles involved in FK bonds increases as we consider μ-ensemble
replicas with larger typical values of the concentration of icosa-
hedra Oj

ico/NK (blue diamonds). However, the fraction of large
particles involved in four-fold FK bonds (necessary for crys-
tallisation) is below 5% even for the replicas with the largest
Oj

ico (red circles). Errorbars indicate standard deviations and
lines are guides to the eye.

icosahedral phase more in detail to understand its relation
with the emergence of rigidity in the glass.

4 Rheological response of the
inactive/icosahedra-rich phase

As a supercooled liquid is cooled down, it eventually un-
dergoes an experimental glass transition where the relax-
ation time τα exceeds the available observation time by
many orders of magnitude. Such a phenomenological tran-
sition is accompanied by the emergence of solid behaviour:
the glass behaves like a solid, in the sense that it can be
probed through rheological measurements, proving a finite
elastic response and shear modulus.

We have shown that as the temperature is decreased,
the Wahnström mixture explores more and more fre-
quently trajectories that are exceptionally rich in struc-
ture. Moreover, the icosahedra-rich trajectories not only
are characterised by low mobility (inactive trajectories)
but they also tend to have configurations with low inher-
ent state energies. Is it possible to connect these structural
and dynamical changes to the emergence of solidity, i.e.
to the rheological response of the system?

We test this idea realising an ensemble of configu-
rations extracted from the trajectories produced in the
μ-ensemble at the thermostat temperature Ts = 0.65.
From every umbrella i of the replica-exchange algorithm
we extract a population of configurations that is repre-
sentative of the fluctuations, in trajectory space, around
a specific value of the population of icosahedra

n0
i = Oico/NK. (9)

In particular, we produce a discrete group of
8 sets with 75 initial configurations each at the
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Fig. 8. Average shear-stress as a function of shear strain for
different values of the typical initial population of icosahedra
in μ-ensemble configurations n0

i . The vertical dashed line cor-
responds to the yield strain.

following typical population of icosahedra n0
i =

[0.09, 0.17, 0.29, 0.33, 0.38, 0.43, 0.49, 0.55]. According to
the available data and the extrapolation of the fit
shown in fig. 1, these populations would be typi-
cal in the equilibrium supercooled at temperatures
[0.67, 0.60, 0.54, 0.52, 0.50, 0.49, 0.46]. In our simulations,
we take averages for every set of initial conditions ex-
tracted from distinct replicas.

To understand the purely mechanical response of the
different sets of configurations we study the linear shear-
ing of the system in the Athermal Quasi-Static (AQS)
limit [66,67]. Under this protocol, the system is slowly de-
formed in a chosen direction at a fixed shear rate γ̇ = 0.005
for a small time interval Δt = 0.005; subsequently, the
FIRE energy minimisation algorithm [60] is employed to
lead the particles to the closest inherent state. The two
steps are repeated until the system reaches a maximum
total strain of γ = 0.5.

In fig. 8 and fig. 9 we plot the response of the sys-
tem in terms of shear stress σxy and fraction of particles
in icosahedral domains for different typical values of the
initial population of icosahedra n0

i . The first striking re-
sult is that the yield stress σyield = maxγ σxy(γ) strongly
depends on n0

i , and it approximately doubles as the typi-
cal population of icosahedra quadruples. The yield strain
γyield (the value of strain at which the maximum stress
is reached) is not sensitive to the different starting condi-
tions and is located at approximately γyield ≈ 0.12 for the
chosen strain rate. At the same time, we notice that the
shear protocol induces a sudden increase of the popula-
tion of icosahedra at very early times (very small strains)
and a progressive decay of the population which accel-
erates as the yield strain is reached. The overall, instan-
taneous increase of the population of icosahedra can be
understood as a consequence of the minimisation proce-
dure, which destroys thermal fluctuations present in the
initial configurations and promotes the formation of local
minimum energy motifs, such as the icosahedron. This im-
plies that the overall population of icosahedra nico(γ) can

Fig. 9. Overall average population of icosahedra as a func-
tion of shear strain for different values of the typical initial
population of icosahedra in μ-ensemble configurations n0

i . The
vertical dashed line corresponds to the yield strain.

be distinguished into two families: the first refers to the
subset of particles that are located in icosahedral domains
in the original starting configurations produced in the μ-
ensemble, and it is identified by the boolean vector ημ of
length N ; the second refers to all the remaining particles
in icosahedral domains, resulting from the AQS protocol,
identified by the vector ημ̄.

As the system is sheared, the number of icosahedra
changes very mildly for strains below the yield strain, and
only later declines, supporting the idea that the popula-
tion of icosahedra is related to the rigid, elastic response
of the system. Having defined two subpopulations of icosa-
hedra, we now quantify their respective differences in the
mechanical response.

To do so, we compute separate auto-correlation func-
tions 〈ηx(γ)ηx(0)〉 for the ημ and the ημ̄ populations,
fig. 10(a), (b). We notice that only for large initial pop-
ulations of icosahedra the autocorrelation functions start
close to unity. This shows that the reorganisation induced
by the AQS protocol not only forms new icosahedral mo-
tifs, but it also initially destroys a fraction of them. The
two families of autocorrelation functions show distinc-
tively different behaviours: the icosahedra present in the
initial μ-ensemble, fig. 10(a), show a long plateau that ter-
minates only when the yield strain is attained; the icosa-
hedra generated via AQS protocol, fig. 10(b), continuously
decorrelate at earlier times (smaller strains).

A further confirmation of the different responses be-
tween the ημ and the ημ̄ icosahedra is provided by the
distribution of the potential energy of the individual par-
ticles constituting the two families. In fig. 11 we plot the
overall energy distributions, for the population, collected
all along the shearing protocol. We clearly observe that not
all icosahedral motifs are energetically the same: particles
located in icosahedral motifs purely emerging from energy
minimisation have energies that are typically higher than
particles identified in icosahedral motifs in the original μ-
ensemble configurations. The energy gap between the two
families widens as we consider initial configurations with
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b

a

Fig. 10. Auto-correlation of the probability for a particle to
be in icosahedral domain for the ημ and the ημ̄ populations
(see main text for definition) for different values of the typical
initial population of icosahedra. The ημ̄ family is not defined
at γ = 0 so, we take the smallest γ as the reference state. The
vertical dashed line corresponds to the yield strain.

Fig. 11. Distribution of potential energies for particles belong-
ing to the ημ (filled distributions) and the ημ̄ (dashed curves)
families (see main text for definition). The distributions are
computed over the whole duration of the shearing protocol
and averaged over 75 initial configurations.

larger concentrations of icosahedra: at very high initial
concentrations (55%), the ημ subpopulation has energies
that are 8% lower than the ημ̄ subpopulation.

5 Conclusions

Through numerical simulations, we have discussed a third
example of structural-dynamical phase transition in a
model of atomistic glassformers, after the previously con-

sidered cases of the Kob-Andersen mixture [33–35, 41, 44]
and the moderately polydisperse hard spheres [45].

A quantitative analysis of the probability distribu-
tions of time-integrated observables demonstrates that
well-chosen time-integrated structural motifs can be used
to perform efficient importance sampling. In particular,
it makes it possible to explore structure-rich trajectories
(representative of colder temperature states [35]) that are
otherwise hard to reach. At the same time, we find con-
firmation for a sharp (first-order) transition in trajectory
space, that becomes measurable below the onset temper-
ature, between a structure-rich and a structure-poor dy-
namical phase, the former becoming more and more likely
as the temperature is reduced, similarly to what has been
previously observed in the Kob-Andersen mixture [35].
Within the range of the explored temperatures, it is im-
possible to assess what the low-temperature fate of the
transition may be: the reduction of the critical conjugate
field value μ∗ suggests that, as the temperature decreases,
the structure-rich phase would prevail. However, it is un-
clear whether the previously reported crystallisation into
complex Laves phases [54] would interfere with the emer-
gence of the icosahedra-rich phase. In our simulations, we
monitored the evolution Frank-Kasper bonds (an essen-
tial element of the complex crystalline phase) and do not
find a significative increase in the icosahedra-rich phase
compared to the icosahedra-poor phase.

In ref. [35], the study of the alternative Kob-Andersen
mixture at low temperature indicated possible scenar-
ios for the temperature dependence of the structural-
dynamical transition. In the present case of the Wahn-
ström mixture, we observe that at 0.72Tonset the structure-
rich phase is highly metastable, while a relatively modest
decrease of the temperature to 0.67Tonset makes the explo-
ration of the structure-rich basin 5 to 7 times more likely,
see fig. 5(d). The temperature dependence of the critical
value μ∗τobs shows a decrease towards μ = 0 which be-
comes less pronounced as the temperature is decreased.
This is accompanied by strong correlations between suc-
cessive steps in the trajectory-space Monte Carlo that
slow down equilibration and make lower-temperature sam-
pling particularly challenging. The present data support
the narrowing of the free-energy gap (in trajectory space)
between the structure-rich and structure-poor states when
the temperature is decreased, and do not exclude the pos-
sibility that the transition terminates at a lower critical
point at finite temperature, as in kinetically constrained
models with additional softness [68].

In order to better understand the importance of
the structure-rich phase, configurations obtained through
trajectory sampling have been probed through an out-
of-equilibrium rheological protocol, effectively regarding
these configurations as samples of an amorphous material
at T = 0. Consistently with previous studies of the Wahn-
ström mixture based on conventional simulations [69], we
find that icosahedra play a major role in the emergence
of rigidity: icosahedra-rich configurations display much
larger yield stresses than icosahedra-poor ones. However,
we nuance this statement, as we are able to split the overall
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family of icosahedral motifs according to the preparation
protocol: well-thermalised configurations from trajectory
sampling have icosahedral regions that are more robust
to shear and with lower energies than the icosahedral do-
mains obtained via energy minimisation. This highlights
that the requirement of sampling long-lived structural mo-
tifs (implicit in trajectory sampling) allows us to explore
metabasins that are not just richer in structure, but more
stable as well.
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