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ABSTRACT
We review recent developments in structural–dynamical phase transitions in trajectory space based on dynamic facilitation theory. An open
question is how the dynamic facilitation perspective on the glass transition may be reconciled with thermodynamic theories that posit collec-
tive reorganization accompanied by a growing static length scale and, eventually, a vanishing configurational entropy. In contrast, dynamic
facilitation theory invokes a dynamical phase transition between an active phase (close to the normal liquid) and an inactive phase, which is
glassy and whose order parameter is either a time-averaged dynamic or structural quantity. In particular, the dynamical phase transition in
systems with non-trivial thermodynamics manifests signatures of a lower critical point that lies between the mode-coupling crossover and the
putative Kauzmann temperature, at which a thermodynamic phase transition to an ideal glass state would occur. We review these findings
and discuss such criticality in the context of the low-temperature decrease in configurational entropy predicted by thermodynamic theories
of the glass transition.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0006998., s

I. INTRODUCTION

Understanding the physical origin of glass transition is a long-
standing challenge in condensed matter physics. Cool any liquid
sufficiently fast and it will not order into a crystal but remain a liq-
uid before, eventually, it falls out of equilibrium and becomes a glass.
The single most important quantity when talking about supercooled
liquids is the structural relaxation time τα, which measures the aver-
age time over which atoms and molecules rearrange such as to lose
memory of their initial positions. Over time, a variety of theoretical
approaches have been developed to account for the massive slow-
down (τα increases by 14 orders of magnitude) in the dynamics of
such supercooled liquids as they approach the experimental glass
transition temperature Tg.1–9

Among the approaches to explain this challenge is dynamic
facilitation.10,11 In this Perspective, we offer a viewpoint that while

some aspects of dynamic facilitation may seem at odds with theo-
ries, which posit a thermodynamic origin to the glass transition in a
number of atomistic models, key predictions of facilitation may be
reconciled with a thermodynamic interpretation. That is to say, the
problem that we seek to address is how to reconcile dynamic facilita-
tion with other, thermodynamic, theories of the glass transition. We
do not attempt to justify dynamic facilitation, rather to try to link it
with certain observations to thermodynamic interpretations of the
glass transition. We refer the reader to Refs. 6, 10, and 11 for reviews
of dynamic facilitation.

We begin by noting a few salient points from various theoreti-
cal treatments pertinent to our discussion (Sec. II) and then discuss
dynamical phase transitions between an active phase (close to the
normal liquid) and an inactive phase in the context of dynamic facil-
itation (Sec. III). In Sec. IV, we move on to consider the so-called
μ-ensemble, which uses a time-averaged structural quantity to drive
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FIG. 1. Roadmap to the glass transition for structural glasses. Configurational
entropy Sconf as a function of temperature. Typically, configurational entropy of
liquids falls faster than that of crystals as a function of temperature. This sug-
gests that at some low temperature—the Kauzmann Temperature TK—the liq-
uid configurational entropy would fall below that of the crystal. Note that we
imagine some population of defects in the crystal so that its configurational
entropy is itself non-zero.9,42 Tg is the operational glass transition temperature
where the structural relaxation time reaches 100 s. TMCT is the mode-coupling
transition. Tm is the melting point, and Ton denotes a crossover temperature
below which relaxation occurs through local fluctuations. The two branches of
the dynamical phase transition of the μ-ensemble (see Sec. IV) are indicated.
The active phase is effectively indistinguishable from the equilibrium liquid. The
inactive or structure-rich phase has a lower configurational entropy, which we
presume lies close to, but is slightly larger than that of the crystal. The puta-
tive lower critical point of the active and inactive phases is thus bounded by
the liquid and crystal and thus lies at a higher temperature than the Kauzmann
point.

a dynamical phase transition.12 We review the reweighting of config-
urations generated in the μ-ensemble to access states representative
of those very deep in the energy landscape13 (Sec. V). In Sec. VI,
we discuss the interpretation of these results within the picture of a
supercooled liquid and crystal branch in a plot of (configurational)
entropy and temperature originally introduced by Kauzmann,14 as
sketched in Fig. 1.

Briefly, we conclude that inactive phases have lower configu-
rational entropy than the normal liquid and that, at sufficiently low
temperature, the inactive phase should merge with the active phase.
The temperature at which this occurs may be reasonably close to (but
is expected to be above) the Kauzmann temperature. More specifi-
cally, in the systems we consider,12,13,15–17 this merging of the active
and inactive phase appears to lie between the Kauzmann tempera-
ture and the mode-coupling crossover. We discuss numerical evi-
dence that this merging is controlled by a lower critical point. One
consequence of the perspective we offer here is that the dynamical
phase transition invoked in dynamic facilitation theory can, for suit-
able systems, be interpreted within the context of the “Kauzmann
plot” of configurational entropy as a function of temperature (Fig. 1).
Therefore, despite the very different starting points, we offer a means
to reconcile approaches of dynamic facilitation and those based on
a thermodynamic interpretation. Before concluding in Sec. VIII, we
consider the challenges of this approach and provide an outlook for
future work in Sec. VII.

II. KEY POINTS FROM THERMODYNAMIC THEORIES

Compared to crystallization, a little apparent change in the
two-point structure assumed by the constituent particles occurs dur-
ing vitrification,18 suggesting that while the origin of the dynamic
slowdown could be due to a phase transition related to some kind
of change in an amorphous order or structure,19 the case that
the glass transition is a predominantly dynamical phenomenon is
compelling.11

In the limit of infinite-dimensional systems, structural correla-
tions beyond two-point correlations become irrelevant. In this limit,
mean-field treatments become exact (see Ref. 20 for a more com-
plete description). Upon cooling (or, in the case of hard-sphere-
like systems, compression), a dynamical transition occurs, related
to the mode-coupling transition.21,22 At deeper supercooling (com-
pressing further for hard-sphere-like systems), a thermodynamic
transition to a state with sub-extensive entropy, a so-called ideal
glass, is encountered. This thermodynamic transition along with the
dynamic transition is captured by mean-field random first order
transition theory (RFOT).23

While the situation in high dimension is now understood, back
in dimension d = 3, a full explanation remains elusive. What we do
know is that the early stages of glassy dynamics (i.e., the first few
decades of increase in relaxation time with supercooling) are accu-
rately described by mode-coupling theory (MCT).21,22,24 As input,
MCT calculations utilize structural two-point correlations and pro-
vide evolution equations for dynamic two-point correlations. How-
ever, unlike the case in high dimension, in lower dimensions, the
MCT approach fails when many–body correlations become impor-
tant for relaxation, which occurs typically after 4–5 decades of
increase in structural relaxation time.25,26 Recently, progress has
been made in this direction,27,28 and a generalized MCT approach
has provided a route to address this limitation, although the Her-
culean task of solving the higher-order coupled equations should not
be understated.29

At deeper supercooling in d = 3, past the (avoided) mode-
coupling transition, random first order transition theory (RFOT)23

and Adam–Gibbs theory30 both feature a vanishing configurational
entropy at non-zero temperature as is found in high dimension.20

This implies a corresponding divergent static correlation length.31

The qualitative picture is that of cooperative motion of more and
more particles in order for the liquid to relax.

Approaches based on replica theory imagine multiple coupled
copies or “replicas” of the same system. A field ε is applied, which
favors the overlap of particle positions between different replicas.
At high temperature, in the liquid, there is zero overlap between
different replicas, but upon cooling, a phase transition occurs to
states, which feature high overlap. In other words, it becomes favor-
able for states with similar configurations to be found. This may
be taken as a further manifestation of the drop in configurational
entropy.32

This application of an external field to induce a phase tran-
sition33,34 has some parallels with the s- and μ-ensembles that we
discuss in the following.11,12,35 However, the application of an exter-
nal field ε in the context of replica theory is fundamentally dif-
ferent from the external field-induced transitions that we discuss
here because these occur in trajectory space, whereas replica theory
concerns configurations, not trajectories.
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Other theories, such as geometric frustration, emphasize locally
favored—or locally preferred—structures (LFS).36 These locally
favored structures are geometric motifs that are minima of the
local (free) energy. Their concentration appears to increase as a
glass former is cooled down, and they have been identified with
the emergence of slow dynamics18,37–39 and a drop in configura-
tional entropy.26,40 Related to these observations, the geometric frus-
tration theory imagines an avoided phase transition to a state of
LFS, which would occur, e.g., in curved space.36 The increase in
LFS with supercooling, while suppressed in Euclidean space,36,41 is
nevertheless understood to be compatible with the picture of some
thermodynamic transition where configurational entropy becomes
small.36

The low-temperature fate of structural glass forming systems in
low dimension is thus summarized in Fig. 1. We do not enter into a
discussion of the nature of any ideal glass transition at TK here, or
indeed its possible avoidance, but refer the reader to Refs. 9, 14, 42,
and 43. Similarly, while the configurational entropy is a challeng-
ing quantity to define, let alone measure,44 we save this discussion
for Sec. V. We see that the configurational entropy of the liquid and
crystal are expected to become equal at the Kauzmann temperature
upon extrapolation.14 Here, we shall argue that the dynamical phase
transition of facilitation leads to two dynamical phases whose config-
urational entropies are bounded by the crystal and liquid, as shown
in Fig. 1. To proceed, in Sec. III, we discuss the dynamic facilitation
approach.

III. DYNAMIC FACILITATION

In dynamic facilitation theory,11 dynamic arrest is attributed
to emerging kinetic constraints. This theoretical approach focuses
on the role of real-space fluctuations and dynamic heterogeneities,45

i.e., the coexistence of mobile and solid-like regions in a supercooled
liquid, instead of thermodynamic and structural mechanisms. Like
several competing theories, dynamic facilitation is built around the
idea of a phase transition, but here, its nature is profoundly differ-
ent: in contrast to conventional thermodynamic phase transitions,
where the coexisting phases are characterized by distinct static prop-
erties (e.g., the density difference in liquid–gas coexistence), dynam-
ical facilitation starts from the observation that in the supercooled
liquid, one encounters regions that relax (warm-colored regions in
Fig. 2) on the timescale of the structural relaxation time τα and
some that do not (blue regions in Fig. 2). Both of these coexist with
one another. The kinetic constraints govern the effective dynam-
ics of localized excitations that sustain motion within the mobile
regions.

To be more specific, let us decompose a large system into dis-
tinct subsystems containing a few hundred particles. Following the
dynamics for an observation time tobs on the order of a few struc-
tural relaxation times, we find that the resulting trajectories per-
formed by some subsystems will display large cumulative displace-
ments, while others will show very little change in their particle
positions. Such behavior can be interpreted as the manifestation

FIG. 2. Dynamic heterogeneity and trajectories. Main panel: Dynamic heterogeneity in a simulation of binary hard discs with a size ratio of 1:1.4. Blue particles have moved
the least (mean-squared displacement ⟨r2

⟩ < 0.01σ2
large), and red particles have moved the most (⟨r2

⟩ > σ2
large). Here, the timescale is taken over the structural relaxation

time τα. (Right) A schematic example of an active trajectory (top) and inactive trajectory (bottom).
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FIG. 3. Schematic of the dynamical phase transition between inactive (slow) and
active (fast) trajectories. Here, c is the density of mobile particles per trajectory,
characterized by larger values of summed short-time particle displacements. The
application of the field s brings the active and inactive populations of trajectories
to a dynamical phase coexistence.

of a dynamical phase transition between a relatively fast-moving
(active) state of trajectories and a slow-moving (inactive) state (cf.
the trajectories in Fig. 2). In a suitable dynamical ensemble, it can be
shown that a genuine dynamical phase coexistence can be established
and that a bimodal distribution of active and inactive trajectories
emerges.12,17,35 Such a dynamical phase coexistence of slow/inactive
and fast/active trajectories is indicated in Fig. 3. The analogy to
conventional phase transitions is made by identifying the density
of mobile particles c with density in a liquid–gas transition, for
example.

A. Excitations: The elementary units of relaxation
It is important to consider the elementary units of relax-

ation. The interpretation here is profoundly different to the coop-
eratively rearranging regions with an increasing length scale pos-
tulated by certain thermodynamic approaches. Facilitation places
much emphasis on the mobility of individual particles (or small
groups of particles). It notes that motion in deeply supercooled liq-
uids occurs through local events termed excitations whose timescales
are much shorter than the (overall) relaxation time. Upon cool-
ing, these relaxation events become rarer but remain essentially
unchanged. Thus, an increasing dynamic length scale ξfac corre-
sponds to larger separations between these events as their population
falls.

Coupling between excitations is achieved through “surging”
events, which are long-ranged, string-like motions of very small
displacements (around 0.1 particle diameters). The motion is very
often reversed such that many surging events are required before
another excitation is “facilitated.”46 Through surging events, exci-
tations are coupled to one another logarithmically such that the
activation energy for relaxation follows Efac ∼ log ξfac.11 Now, the
Boltzmann factor implies that the concentration of excitations falls
like c ∼ exp(−Efac/kBT), so log c∝ 1/T. The mean separation between
excitations is ξfac ≈ c−1/d, where d is the spatial dimension. Thus, to
leading order, the activation energy scales as 1/T, and the timescale
for relaxation log τα ∼ Efac/kBT ∼ exp(1/T2). These arguments
underlie the Elmatad–Garrahan–Chandler form for the relaxation
time,47

log τα = (
J

Ton
)

2
(

Ton

T
− 1)

2
, (1)

where Ton is the onset temperature for slow dynamics and J is a
parameter to scale the activation energy. A range of glass formers
with varying chemical properties have been shown to collapse onto
a single curve described by Eq. (1), which fits the data at least as well
as the semi-empirical Vogel–Fulcher–Tamman form.47

B. Kinetically constrained models
In a series of papers, idealized lattice models of supercooled

liquids, so-called kinetically constrained models (KCMs),48–52 have
been investigated. These models capture the essence of dynamical
facilitation as they essentially neglect the details of particle–particle
interactions, focusing on the hindrance to relaxation that is a dis-
tinctive feature of supercooled liquids. This is represented through
simple and idealized on-lattice rules for the motion of particles or
the relaxation of spin excitations. Although the Hamiltonian of such
models is often designed to be trivial, they exhibit highly nontriv-
ial, glassy dynamics, in particular, faster than the exponential (i.e.,
super-Arrhenius) increase in the relaxation time with decreasing
temperature and dynamic heterogeneities. The fact that these ide-
alized models exhibit so much of the phenomenology of dynamic
arrest in liquids (such as super-Arrhenius relaxation and dynami-
cal heterogeneity) provides strong evidence that a thermodynamic
glass transition—absent here by construction—is not necessarily
required.

Regardless of the details of their respective kinetic rules, kineti-
cally constrained models show a dynamical first-order phase tran-
sition between an “active” phase (many spin relaxations) and an
“inactive” phase, which is stuck in jammed configurations for long
times. The phase diagram is sketched in Fig. 4(a), with a coexistence
line that, in the thermodynamic limit, emanates from a critical point
at Tc = 0 and lies at s = 0. The dynamical field s that drives the tran-
sition pertains to the time-averaged mobility along a trajectory and
is discussed in detail in Sec. IV.

This picture holds for “hard” constraints that cannot be vio-
lated. In atomistic systems, the corresponding effective kinetic con-
straints are emergent and possibly can be violated. This has been
included in KCMs in the form of an energy barrier, and over-
coming this barrier allows us to bypass the constraints.48,53 The
phase diagram now changes, as sketched in Fig. 4(b): While there
is still a coexistence line delineating the active and inactive phases, it
bends away from the temperature axis with scoex(T) > 0. The lower
critical point moves to a finite temperature, and now, there is an

FIG. 4. Dynamical phase transitions in kinetically constrained models. (a) The East
model (KCM), which undergoes a dynamical transition at s = 0 for all tempera-
tures terminating in a critical point at Tc = 0. (b) Adding “softness” to the East
model shifts the transition and moves the lower critical point to a finite temperature
Tc > 0 and positive field sc > 0. There is now also an upper critical point beyond
which dynamics is no longer facilitated. Adapted from Ref. 48.
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upper critical point terminating coexistence. Beyond the two critical
points, facilitation is weak: at low temperatures, it becomes favorable
to “pay” the energy cost since relaxation through the constrained
dynamics is taking even longer, while at high temperatures, the ther-
mal energy overwhelms the constraints. In the following, we present
evidence that this qualitative picture carries over to dynamic phase
transitions in atomistic model glass formers.

A more formal understanding of the s-ensemble relies on the
application of theory of large deviations to non-equilibrium steady
states, where the transition is determined from the non-analyticities
of cumulant generating functions that can be interpreted as the non-
equilibrium analog of free energies.54 Interestingly, such dynamical
transitions seem to be robust to the application of external driving
forces that break detailed balance.55–57

C. Simultaneous “success” of thermodynamic
and dynamic approaches

At this point, it is helpful to recall that both thermodynamic
approaches in low dimension and dynamic facilitation are “phe-
nomenological theories” that aim to capture the dominant mecha-
nism through which relaxation in supercooled liquids is hampered.
With the exception of mode-coupling theory, we are not dealing
with first-principles microscopic theories that yield explicit expres-
sions, which makes it hard to discriminate both approaches based
on experimentally accessible data and computer simulations. Both
thermodynamic and dynamic interpretations describe the available
data, thus leaving us with a conundrum: how can the observed—
albeit subtle—structural changes occurring in glass forming liq-
uids18,58 (consistent with thermodynamic Adam–Gibbs or RFOT
approaches) be compatible with the picture emerging from dynami-
cal facilitation?

Evidence in support of each approach has been presented.
For example, several recent studies9 have shown that the deeply
supercooled state presents a low configurational entropy that mono-
tonically decreases with temperature, as expected in the Adam–
Gibbs/RFOT scenario, both in advanced Monte-Carlo simulations59

and colloidal experiments,26,40,60 as well as a growing static length
scale in experiments on molecules.61 On the other side, support for
dynamic facilitation comes from computer simulations of atomistic
models (including three dimensional Lennard-Jones binary mix-
tures and hard spheres62–64), which are less idealized than KCMs
and in which kinetic constraints are not present by construction but
emerge from interparticle forces. While such simulations, of course,
cannot conclusively prove the validity of dynamical facilitation, the
absence of a dynamical phase transition would have been a con-
siderable blow to the theory, suggesting that it might be limited to
KCMs. Some success was found even in experiments with molecu-
lar systems, where KCMs were shown to explain calorimetric effects
in the glass transition,65 while colloids exhibit the dynamical phase
transition of Fig. 5.15,66

Although originating from studies of kinetically constrained
models, dynamical phase transitions are not an exclusive trait of
dynamic facilitation. It appears that any sufficiently complex model
with long-lived metastable states can be driven into an inactive
phase using an order parameter that couples to mobility. In particu-
lar, spin glasses were shown to exhibit a dynamical active-inactive
transition.67 This is significant as these models are amenable to

FIG. 5. Phase transitions in trajectory space for the Kob–Andersen binary Lennard-
Jones mixture. Throughout, red and blue lines refer to trajectory lengths tobs ≈ 5τα
and tobs ≈ 10τα, respectively. (Left column) s-ensemble: (a) probability distribu-
tions p(c) for the density of mobile particles c for two trajectory lengths. The
non-concave shape indicates a phase transition in trajectory space as becomes
obvious from the bimodal distribution (b) at the field s∗ that maximizes the fluc-
tuations ⟨c2

s⟩ − ⟨cs⟩
2. (c) Average fractions of mobile particles (solid lines) and

bicapped square antiprism cluster population (dashed lines) vs the biasing field
s. (Right column) [(d)–(f)] as the left column but for the μ-ensemble. Here, the
bicapped square antiprism [depicted in (f)] is the locally favored structure. Repro-
duced with permission from Speck et al., Phys. Rev. Lett. 109, 195703 (2012).
Copyright 2012 American Physical Society.

mean-field theory and some follow the same physics as structural
glasses in high dimension.20,68 The suggested phase diagram of one-
step replica symmetry-breaking models is more complicated than
Fig. 4 since the active phase (including s = 0) accommodates the
additional transitions (which are not indicated here). Because their
thermodynamics is trivial, KCMs do not exhibit the ε-transition
of replica theory, which occurs in configurational space; rather,
this is limited to systems with non-trivial thermodynamics. For
large temperatures, the coexistence line scoex > 0 is again expected
to bend away from the temperature axis due to the absence of
temperature-independent “hard” constraints.

We now review recent work on the role of the local structure
in dynamical phase transitions and its implications for a possible
route to reconcile both theoretical approaches—dynamic facilita-
tion and the thermodynamic RFOT and Adam–Gibbs. It is based
on the observation that in atomistic models of glass formers, kinetic
constraints are emerging (coarse-grained) interactions that are
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necessarily accompanied by a structural signature. This implies
(weak) spatial interactions between excitations absent in idealized
KCMs. One can therefore probe the role of the local structure in
the dynamical phase transition exhibited by atomistic models,35 and
indeed, the inactive phase proves to have a higher density of particles
in locally favored structures.12

It is also possible to go rather further and to introduce a
structural–dynamical order parameter that introduces an explicit
structural component to the dynamical phase transition. This
structural–dynamical phase transition is the so-called μ-ensemble,
in which distinct phases emerge: poor (active) and rich (inactive) in
time-averaged populations of structural motifs. In the μ-ensemble,
the active phase, like that in the s-ensemble, is close to the nor-
mal liquid. The inactive phase, however, is rich in locally favored
structures.12

Numerical evidence for the structure-poor and structure-rich
dynamical phase coexistence has so far been obtained for three dif-
ferent model glass formers: Kob–Andersen (KA),12,13 Wahnström16

(both are binary mixtures with Lennard-Jones pair potentials), and
polydisperse hard spheres.15,69 Generally speaking, similar behavior
is seen in the three models, and we emphasize differences between
the models at appropriate points in the discussion.

IV. DYNAMICAL PHASE TRANSITIONS IN ENSEMBLES
OF TRAJECTORIES

The purely dynamical s-ensemble and structural–dynamical μ-
ensemble are constructed in a rather similar manner, and we find it
expedient to discuss both together. In the case of the μ-ensemble,
the first link that we want to establish is between the dynamical
phase transitions of dynamical facilitation and the structural changes
observed in the liquid. Is there any relation between the glassy tra-
jectories of the inactive dynamical phase and the emergence of local
structural order?

A. The s -ensemble
To answer this question and in the spirit of statistical mechan-

ics, we seek to define order parameters that quantify the correspond-
ing behavior. Specifically, this is

C[X] =
tobs

∑
t=1

Nĉ(t − 1, t), (2)

measuring the time-averaged population C of mobile particles along
trajectories X of length tobs (which is measured in multiples of the
microscopic time required for a single particle to commit to a new
position65). Here, ĉ(t − 1, t) is the fraction of mobile particles that
underwent such a transition to a new (average) position between
frames t − 1 and t. We also define the fraction c = C/(Ntobs), which
takes on values between zero and unity. The crucial feature is that
this order parameter is extensive both in space and time.

At first glance, as shown in Fig. 5(a), the probability distribution
of c is somewhat unremarkable; they appear as Gaussians as dictated
by the central limit theorem, reflecting fluctuations in the super-
cooled liquid. However, pushing into the tails of the distributions
(low values of C), we soon realize that they decay much slower than
what would correspond to a Gaussian [cf. Fig. 5(a) for the binary

Kob–Andersen mixture]. To elucidate the conceptual behavior, we
introduce the external “field” s,

⟨C⟩s =
1

Z(s)
⟨Ce−sC

⟩, (3)

which promotes rare trajectories with the corresponding “dynamic”
partition function Z(s) ensuring normalization. For obvious rea-
sons, this ensemble is dubbed the s-ensemble. Equation (3) is a
form of importance sampling.70,71 The theory behind it connects
to the mathematics of large deviations54 and will not be reviewed
here. Sampling sufficiently many trajectories in computer simula-
tions at non-vanishing fields is a challenge that requires advanced
sampling techniques. Two candidates are transition path sampling
(TPS)72,73 and cloning algorithms.74,75 The results shown here have
been obtained from a combination of transition path sampling with
replica exchange, for details see Refs. 72 and 73. One consequence of
the substantial computational demand is the need to consider small
systems composed of a few hundred particles.

B. The μ-ensemble
Rather than the time-averaged population of mobile particles,

the μ-ensemble considers time-averaged populations of particles in
locally favored structures. The construction of the order parame-
ters and ensemble is entirely analogous to the s-ensemble. Follow-
ing Eq. (2), the population of structural motifs averaged along the
trajectory is

N [X] =
tobs

∑
t=0

Nn̂(t), (4)

where n̂(t) is the fraction of particles found in the chosen structural
motif (typically the locally favored structure) at t.

Similarly to the s-ensemble, as shown in Fig. 5(d), the proba-
bility distributions of n is single-peaked but with a rather clear “fat
tail” at high n, corresponding to much slower decay than would be
the case for a Gaussian. As above, we introduce an external “field” μ,
which promotes rare trajectories,

⟨N ⟩μ =
1

Z(μ)
⟨N eμN ⟩, (5)

with the dynamic partition function Z(μ). By analogy, we call this
ensemble of biased trajectories the μ-ensemble.

C. Structure can drive global dynamics
Numerical curves of the population of particles in locally

favored structures averaged along a trajectory corresponding to
Eq. (5) are plotted in Figs. 5(c) and 5(f) and show that there is
a qualitative change as we increase both s and μ, which becomes
more abrupt as the trajectory length is increased. The corresponding
susceptibilities peak at s∗ and μ∗. These are hallmarks for a phase
transition, which here occurs in the space of trajectories.

Figure 6 shows the joint distribution of n and c for different
values of the fields, for which we can discern two basins separated
by a barrier. This demonstrates that the transition occurs between
a phase that has many mobile particles and a low occupation of
LFS (which we identify with the normal supercooled liquid) and a
phase with very few mobile particles and a high population of LFS.
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FIG. 6. Logarithm of the joint probability for mobility c and time-integrated LFS
population n shown for (a) the unbiased ensemble and at coexistence in (b) the
dynamical s-ensemble and (c) the structural μ-ensemble. The phase diagram
in the s–μ plane is sketched in the upper corner. Reproduced with permission
from Speck et al., Phys. Rev. Lett. 109, 195703 (2012). Copyright 2012 American
Physical Society.

The later phase shows properties normally associated with a glass.
This interpretation is further supported by looking at the reweighted
marginal distributions at s∗ and μ∗ [Figs. 5(b) and 5(e)], which
exhibit two peaks. Both phases are also termed active and inactive,
respectively. In particular, the μ-ensemble probes the active–inactive
transitions explored in the s-ensemble: inactive trajectories correlate
strongly with trajectories rich in locally favored structures.

It is worth noting that the change in LFS population ⟨n⟩s,μ
is rather more marked in the case of the μ-ensemble transition
[Fig. 5(f)] than is the case for the s-ensemble [Fig. 5(c)]. While
both access the same basin in the mobility–LFS population (c, n)
plane (as discussed below, Fig. 6), the change in ⟨n⟩s,μ between the
two ensembles is worthy of some discussion. We make the fol-
lowing observation: the trajectory lengths are up to tobs = 10τα in
length, sampled at a temperature of 0.6. For deep supercooling (say
T < 0.4), the relaxation time is much longer than this timescale of
10τα at T = 0.6. Specifically, τα(T = 0.6) ≈ 32, while τα(T = 0.4)
≈ 2.91 × 105 Lennard-Jones time units. So biasing to a low frac-
tion of mobile particles is less effective since the number of mobile
particles on the timescale of the trajectories even in the normal
liquid is very small for deeply supercooled states. On the other
hand, the population of particles in locally favored structures con-
tinues to increase significantly even at rather deep supercooling;76,77

thus, biasing on the population of particles in LFS may generate
configurations deeper in the energy landscape than biasing on the
dynamics.

In particular, we see that in Fig. 6, the fraction of mobile par-
ticles reaches less than 0.01, which, in an N = 216 particle system,
as is the case here, corresponds to just one or two particles being
mobile. Thus, the system has, in a sense, become almost as slow

as it can under the s-ensemble biasing, but given the short trajec-
tories and small system sizes, the rate of relaxation is still much
higher than would be the case at a much lower temperature where
the LFS population would be higher. In other words, under these
system sizes (which includes, crucially, trajectory lengths), the sys-
tem has become almost as slow as it can. In this temperature regime,
no such limit pertains to the μ-ensemble, the population of LFS can
rise at least as high as n ≈ 0.5, thus applying the biasing field can
generate a rather higher LFS population than is the case for the
s-ensemble.

While an exhaustive range of structures has not (yet) been
explored in the μ-ensemble, we remark that the locally favored struc-
ture is identified as that which lasts longer than other candidate
local structures that minimize the local energy,78 as identified in a
range of systems.76,79,80 Structures whose symmetry is distinct to the
LFS have been investigated, and no μ-ensemble type transition was
observed.15 The possibility of other structures and indeed other met-
rics such as order-agnostic approaches is an intriguing avenue to pur-
sue to investigate other biasing fields for dynamic phase transitions,
and we return to this point below.

In Fig. 7(a), we plot the reweighted distribution of n for another
model system, polydisperse hard spheres.17 We now have a closer
look at the trajectories populating the first peak (red shaded area,
LFS-poor) and the second peak (blue shaded area, LFS-rich). As
shown in Fig. 7(b), the static structure, as measured by the pair dis-
tribution function, is very similar (note, however, the splitting of
the second peak). In contrast, the dynamics, as measured by the

FIG. 7. Trajectory properties in hard spheres. (a) Distribution function Pμ∗(n) of
the population of LFS at coexistence. Shaded areas corresponding to the peaks of
the distribution indicate the range of n values associated with the normal (active)
liquid (LFS-poor, red) and the inactive phase (LFS-rich, blue). (b) Radial distribu-
tion functions obtained from trajectories sampled within the LFS-poor (red) and
LFS-rich (blue) region of P(n). Arrows indicate the positions of peaks. (c) Interme-
diate scattering functions and (d) mean-squared displacement for the two phases.
Reproduced with permission from M. Campo and T. Speck, J. Chem. Phys. 152,
014501 (2020). Copyright 2020 AIP Publishing LLC.
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FIG. 8. Results of trajectory sampling (μ-ensemble) computer simulations of the Kob–Andersen binary Lennard-Jones mixture. (a) Temperature vs μ phase diagram. Two
distinct structural–dynamical phases are found at coexistence at a finite value μ∗ of the field μ when sampling trajectories of different durations tobs (filled and empty circles):
these are poor and rich in the structure (LFS poor/rich), represented in the insets (with red and dark blue particles indicating the LFS regions). The scaled value μ∗tobs,
however, lies on a single line. A linear extrapolation (dashed line) indicates that at a temperature T×, one would observe the transition from one phase to the other directly
in the thermal average of structural quantities (μ = 0) without recurring to large deviations, under the form of intermittency. (b) Dynamical coexistence in the temperature vs
concentration of LFS per trajectory plane. The coexistence region (determined by several numerical methods, in blue) has a non-trivial temperature dependence and narrows
as the temperature is reduced. The equilibrium supercooled liquid approaches the coexistence region gradually and is always located close to the LFS-poor boundary. The
extrapolation of the line of susceptibility maxima (green stars) and the equilibrium line meet at a temperature close to TK, suggesting a crossover between the LFS-poor and
the LFS-rich liquid. More information in Ref. 13. Reproduced with permission from Turci et al., Phys. Rev. X 7, 031028 (2017). Copyright 2017 American Physical Society
with additional data from Ref. 77.

intermediate scattering function [ISF, Fig. 7(c)], and the mean-
square displacement [Fig. 7(d)] are markedly different, demonstrat-
ing that the average dynamics in the LFS-poor phase is “fast,” while
in the LFS-rich phase, it is much slower. There is thus again a strong
correlation between the overall population of LFS and the global
dynamics.

The phase diagrams that can be constructed from the analysis of
probability distributions are presented in Fig. 8 for the binary Kob–
Andersen mixture, in Fig. 10 for the Wahnström mixture, and in
Fig. 11 for a mixture of hard spheres with 10% polydispersity (spread
of particle diameters). All phase diagrams have temperature/inverse
density along the y axis and either LFS population n or the conjugate
field μ along the x axis.

Experimental evidence, using colloidal suspensions, has now
been found for this structural and dynamical phase transition.15,66

More recent studies81 suggest that the inactive/locally favored
structure-rich phase obtained in the space of trajectories also cor-
relates strongly with particularly low (potential) energy states and
that when decreasing the temperature, the inactive, LFS-rich phases
tend to dominate the statistics, with the coexistence values of s∗

and μ∗ approaching zero as the temperature is decreased. In this
sense, guiding trajectory sampling with the usage of time-integrated
observable can be an efficient way to identify low energy states, more
present in the arrested glassy phases.

Before discussing the trajectory reweighting,13 which enables
one to generate configurations representative of very deeply super-
cooled states, we directly address the title of this section, struc-
ture can drive global dynamics. Before proceeding, we note the
intriguing dynamical behavior of the isoconfigurational ensemble
of Widmer-Cooper and Harrowell,82 where different regions of the
system exhibit consistently different mobility, when run from the
same configuration with randomized velocities. This provides strong
evidence in support of the idea that certain configurations lead to

slower dynamical behavior than others. In other words, dynamic
heterogeneity is encoded in the structure in the atomistic systems
considered.

We now discuss evidence for the effect of the configurations
generated by the trajectory sampling of the s- and μ-ensembles on
the dynamics of the system. In the case of KCMs, Keys et al. showed
that the s-ensemble produced inactive configurations with prop-
erties representative of states at far deeper supercooling than the
temperatures at which they had been sampled.83 For atomistic sys-
tems, using the μ-ensemble, Speck et al. showed that inactive con-
figurations were effectively solids, which “melted” after a certain
incubation time when run with unbiased dynamics at the sampled
temperature (T = 0.6).12 As shown in Fig. 9, even the unbiased liq-
uid at a lower temperature (T = 0.5) had a more quickly decaying

FIG. 9. “Melting” glassy configurations generated with the μ-ensemble. The inter-
mediate scattering function is shown for an inactive LFS-rich configuration, run at
the sampling temperature T = 0.6 (black line). Although it eventually decays, indi-
cating particle movement, the ISF [F(k, t)] remains close to unity for an extended
period, indicating that the particles do not move. Here, the wavevector for the ISF
is close to the main peak of the structure factor. This relaxation is much slower
than the equilibrated supercooled liquid at T = 0.6 (red line) and even the liquid at
T = 0.5, below the sampling temperature is much quicker to relax than the
μ-ensemble configuration. Reproduced with permission from Speck et al., Phys.
Rev. Lett. 109, 195703 (2012). Copyright 2012 American Physical Society.
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intermediate scattering function than a configuration biased in the
μ-ensemble. Qualitatively similar results were obtained for the s-
ensemble by Jack et al.84 We then conclude, in addition to the
dynamical phase transition and its place in the facilitation picture,
that, regardless of any theoretical standpoint, the biasing s- and μ-
ensembles generate configurations that are more “solid-like” than
those run with conventional dynamics.

V. REWEIGHTING FOR DEEPLY SUPERCOOLED
CONFIGURATIONS

Guiding trajectory sampling has been recently tested in the case
of a canonical atomistic glass former (the Kob–Andersen binary
mixture),13 and it has been shown that other systems exhibit sim-
ilar behavior, such as hard spheres15 and the Wahnström binary
Lennard-Jones model.16 In particular, it has been shown that the
large deviations of time-integrated structural observables give access
to configurations that sample the tails of the probability distribution
of inherent state energies, which appear consistent with those sam-
pled at lower temperatures than accessed directly in the simulations.
Under the assumption that these configurations are indeed represen-
tative of the system at low temperature, we now consider reweight-
ing to recover the thermodynamical properties of the system (such
as the configurational entropy) down to very low temperatures,
without the need of sampling the dynamics at low temperatures
directly. Before proceeding, we emphasize that this method enables
us to access configurations representative of states very much more
deeply supercooled than the temperatures at which we sample. For
example, in the case of the Kob–Anderson model, whose mode-
coupling crossover is TMCT ≃ 0.435 and the temperature obtained
by fitting the Vogel–Fulcher–Tamman equation TVFT ≈ TK ≈ 0.30
± 0.02,13,77,85,86 the lowest sampling temperature is 0.48, yet
reweighting provides access to configurations representative of the
system at temperatures of T ≈ 0.35 or even less.13

Our measure of configurational entropy is via the number of
amorphous inherent states Ω(ϕ) ∝ eNσ (ϕ)δϕ in a range of inher-
ent state energy per particle ϕ − δϕ/2 ≤ ϕ < ϕ + δϕ/2. Here, σ(ϕ)
is the enumeration function, which is quadratic in ϕ. Thus sam-
pling of configurations with very low inherent state energies via the
μ-ensemble gives a measure of the density of states as a function of
the inherent state energy. In the thermodynamic limit, the exten-
sive configurational entropy becomes ln(Ω) ≈NSconf, with Sconf = S∞
+ σ(ϕ) above the thermodynamic (Kauzmann) transition and Sconf
= 0 below. We obtain a configurational temperature from dσ/dϕ
= 1/Tconf. Further details, along with methods to reweight to the case
that the effective biasing field is removed and thus obtain configura-
tions representative of the experimental (μ = 0) case, are given in
Ref. 13.

Additionally, this approach shows that the dynamical phase
transition between trajectories poor/rich in the local structure sam-
pled in the trajectory ensemble corresponds to a transition between
two distinct metastable amorphous states at high/low inherent state
energies, respectively: one corresponds to the supercooled liquid
sampled in conventional dynamics; the other to a secondary amor-
phous state, with low energy, low configurational entropy, rich in
structure, and very slow dynamics (see Fig. 8). This second amor-
phous state is more metastable than the conventional supercooled

liquid; however, the difference in stability (as measured by the value
μ∗ of the conjugated field μ at coexistence between the two phases)
is a function of the temperature and decreases as the temperature is
reduced.

Extrapolations are consistent with the scenario that μ∗(T)→ 0
at a finite crossover temperature T× ≳ TK. However, we emphasize
that between the lowest temperature at which we sampled, T = 0.48,
and the temperatures to which the system is reweighted, the relax-
ation time increases to an enormous extent. Moreover, in the case
of the other models that have been investigated, in particular, the
Wahnström binary Lennard-Jones model,16 the extrapolation does
not lead to T× ≈ TK, as μ∗(T) → 0, and that indeed, μ∗(T) does
not seem to follow a straight line (Fig. 10). The same holds for hard
spheres, as shown in Fig. 7.17 The observation is that while the topol-
ogy of the phase diagram is preserved, the actual degree of metasta-
bility of the supercooled liquids, as quantified by the coexistence
value of the dynamical chemical potential as a function of tempera-
ture, actually depends on the details of the system. Yet, we find that
the emerging, long-lived LFS in the structure-rich phase has a direct
physical meaning: configurations extracted from the structure-rich
phase display a more rigid response, related to the enhanced stability
of the locally favored structures.16

Is the reweighting necessary? Before moving to put the pieces
together and constructing our standpoint, we pause to consider
the importance of the reweighting methods we have discussed.13,16

While these enable us to access configurations inaccessible to brute
force simulations, due to their low temperature, in fact, it is possi-
ble to identify the dynamical phase behavior we consider without
reweighting.17 The results are shown in Fig. 11. It is clear in this
figure that the LFS-poor (normal liquid) and LFS-rich (inactive)
phases approach one another in much the same way as is the case
of the reweighted data used in the case of the Lennard-Jones models
above.13,16 We thus conclude that, important though the reweight-
ing is to access deeply supercooled configurations, it is not necessary
to demonstrate the topology of the dynamical phase transition.

FIG. 10. Results of trajectory sampling (μ-ensemble) computer simulations of the
Wahnström binary Lennard-Jones mixture. In this system, the LFS is the icosahe-
dron.37,79 Temperature vs μ phase diagram. A structural–dynamical phase coex-
istence is found at a finite value μ∗ of the field μ when sampling trajectories of
durations tobs. These are poor and rich in structure (LFS poor/rich). Pink line is to
guide the eye. Reproduced with permission from Turci et al., Eur. Phys. J. E 41,
54 (2018). Copyright 2018 SpringerNature.
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FIG. 11. The μ-ensemble coexistence region for hard spheres in the (1/η, n) plane,
where η is the volume fraction, represented as the blue shaded area between the
active phase (nact) and inactive phase (nin) peaks from the dynamical phase transi-
tion. Results are shown for biased transition path sampling (TPS) simulations (blue
symbols) together with the population in the liquid phase obtained from straight-
forward simulations [orange symbols, also shown in Fig. 1(b)]. The dashed line is
a linear fit of the ensemble-averaged population at coexistence (green, star sym-
bols), η ≥ 0.55. The gray horizontal line indicates the location of η0 where the VFT
expression for the relaxation time τα diverges. The red horizontal line indicates the
location of ηc where the barrier between phases is extrapolated to become inde-
pendent of tobs. Modified from [Reproduced with permission from M. Campo and T.
Speck, J. Chem. Phys. 152, 014501 (2020)]. Copyright 2020 AIP Publishing LLC.

VI. PUTTING IT ALL TOGETHER
We have shown that the dynamical phase transition in the μ-

ensemble, albeit of a (time-integrated) structural quantity, allows
access to states very deep in the energy landscape and in the case
of the KA model seems to have a lower critical point close to the
putative Kauzmann transition of Adam–Gibbs and RFOT theory,13

as indicated in Figs. 1 and 12(c). How can it be that a method based
on dynamical phase transitions, starting from such a wildly differ-
ent standpoint, can apparently start to relate to the thermodynamic
Kauzmann-type scenario?

Some insight may be gleaned from examining certain physi-
cal quantities in the two phases—the structure-rich inactive phase
and the structure-poor active phase, which lie close to the normal
unbiased, supercooled liquid (in the sense that nact

≈ ⟨n⟩). We
begin with the inherent state energy ϕ in Fig. 12. It is clear that at
a relatively high temperature (e.g., T = 0.6 in the Kob–Andersen
model), the typical inherent state energy of the structure-rich inac-
tive phase is very low (relative to the structure-poor equilibrium
liquid). Upon dropping the temperature, in the structure-rich inac-
tive phase, the inherent state energy decreases more gradually upon
reducing the temperature, while that of the structure-poor active
phase falls markedly.

In the case of the Kob–Andersen mixture, the simulations in
trajectory space13 allow us to be more quantitative. The average
inherent state energy of the structure-poor liquid is found to be well
modeled by

ϕact
(T) = ϕ∞ −

J2

2T
(6)

in the regime where inherent states are well defined (i.e., for temper-
atures well below the onset of slow dynamics), with J being a fitted
characteristic energy scale. In the same regime, the average inherent
energy of the structure-rich states follows approximately

ϕin
(T) ≈ γT + ϕ0, (7)

with fitting parameters γ and ϕ0. These specific forms suggest the
existence of a crossover temperature T× at which the structure-
poor and the structure-rich state become indistinguishable, which
for the particular values of the fitting parameters results to be
T× ≈ 0.33. This is a suggestive insight of the trajectory sampling
approach in the context of atomistic glass formers: the structural–
dynamical transition appears to terminate at a very low temperature

FIG. 12. Schematic picture of a tentative continuous transition. Shown are the trajectory sampling simulations for the binary Kob–Andersen mixture of Ref. 13 reweighted
to the unbiased dynamics μ = 0. (a) Inherent state energy per particle as a function of temperature, (b) entropy as a function of inherent state energy, and (c) entropy as a
function of temperature. In (a), circles and squares correspond to the LFS poor/rich inherent state energies at coexistence obtained for two sampling temperatures Ts = 0.50
and 0.48.
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in a critical point close to, but above, the estimates of the temperature
at which the relaxation times diverge (the Vogel–Fulcher–Tamman
fit used here suggests a divergence at TVFT ≈ 0.325), though as noted
above, a range of values have been obtained for such a substantial
extrapolation and we take TVFT ≈ TK ≈ 0.30.13,40,77,85,86

As the inherent state energies of structure-rich and structure-
poor states converge, we can follow the decrease in configurational
entropies of the two disordered states with decreasing temperature.
In particular, configurational entropy Sconf, inherent state energy ϕ,
and as noted in Sec. V, (configurational) temperature are related
by dSconf/dϕ = 1/T. Thus, the two equations [(6) and (7)] imply
dSact

conf/dϕ
act
= 2(ϕ∞ − ϕact

)/J2 and dSin
conf/dϕ

in
= γ/(ϕin

− ϕ0),
respectively.

After integration,

Sact
conf(ϕ) = S∞conf −

(ϕ − ϕ∞)2

J2 (8)

and

Sin
conf(ϕ) = γ ln

ϕ − ϕ0

G
, (9)

where G is an integration constant. Imposing that at T×, the two
states also have the same configurational entropy that fixes the value
of G. Figure 12(b) illustrates the two branches of configurational
entropies for the two states. The same information can be cast as a
function of temperature [see Fig. 12(c)] where the decrease in the
entropy difference between the structure-poor and structure-rich
states as a function of the temperature is explicit. We remark that
Fig. 12(c) is reminiscent of the original Kauzmann plot of (config-
urational) entropy shown in Fig. 1, where the structure-rich, low
entropy state plays now the role originally assigned to the crystal,
albeit with a slightly higher configurational entropy.

What does it all mean? The emerging picture is that at a low
enough temperature, the equilibrium, structure-poor supercooled
liquid becomes indistinguishable from a very low entropy, very
low energy structure-rich metastable state. Remarkably, this picture
contains elements of both the Adam–Gibbs/RFOT scenario (i.e.,
a steadily decreasing configurational entropy to a disordered low
entropy state at very low temperatures) and the dynamical facilita-
tion scenario indicated in Fig. 1 (i.e., the structure-rich state is at the
same time an inactive state12,87).

An important question revolves around the location and nature
of the crossing point T× of the inherent state energy and configura-
tional entropy. This is ultimately related to the fate of the structural–
dynamical phase coexistence in trajectory space and, in particu-
lar, the location of any lower critical point of the dynamical phase
transition. Several possibilities arise (see more detailed discussions
in Refs. 9 and 13). Simulation results of three particulate systems
(the Kob–Andersen binary mixture, the Wahnström mixture, and
polydisperse hard-spheres) indicate that the coexistence terminates
at temperatures between the Kauzmann temperature TK and the
mode-coupling crossover TMCT. Whether the coexistence terminates
at nonzero dynamical chemical potential μc is still an open question,
whose resolution will depend on more accurate, low temperature
measures and finite size studies. We recall that the μ-ensemble is
explicitly a structural–dynamical phase transition, so any divergence

at a lower critical point is expected in space as well as time. We
believe that this character should also be exhibited by the s-ensemble,
given the change in local structure across the s-ensemble (Figs. 5
and 6). Therefore, we expect that any lower critical end-point would
be accompanied by a diverging static correlation length influencing
the unbiased liquid even for μc > 0 and providing a mechanism for
increasing static correlations.

As to the exact relationship between the dynamical phase tran-
sition and any thermodynamic glass transition, it is clear that the
structure-rich inactive phase is a state with exceedingly low configu-
rational entropy and so, in some sense, lies at least close to any “ideal
glass” state with vanishing configurational entropy.

How does this square with the kinetically constrained models?
Interestingly, by adding “softness,” i.e., by softening the constraints
of the East model (a KCM), Elmatad and Jack were able to show a
profound difference in its dynamical phase diagram (Fig. 4).48 As
noted above, the unmodified East model has its dynamical phase
transition at s = 0, but the softness led to a lower critical point remi-
niscent of that in the Kob–Andersen model in Fig. 8. The dynamical
phase transition moreover shifted to a positive value of the dynam-
ical field s. Related results were obtained by Turner et al.34 with
plaquette models, which might also be thought of as “KCMs with
thermodynamics.” Here, the same model showed the s-ensemble
type transition and the ε-coupling of the replica theory. Moreover, as
already noted above, spin glasses with non-trivial thermodynamics67

can also exhibit a dynamical transition.
The picture that emerges is that in systems with nontrivial ther-

modynamics, be they atomistic or colloidal glass formers13,16,17 or
spin glasses,67 the dynamical phase transition has a lower tempera-
ture end-point (critical point) at finite temperature. Such behavior is
supported in KCMs through softening constraints.48

We summarize our standpoint as follows:

● The μ-ensemble dynamical phase transition has two
branches (active and inactive), which approach one another
at low temperature.

● Assuming a full convergence, there should be a structural–
dynamical critical point with diverging length scales and
timescales.

● The low configurational entropy of the inactive phase is
reminiscent of the crystal in the Kauzmann plot.

● Since the inactive phase is amorphous, Sin
conf > Sxtal

conf, so any
convergence with the normal liquid should occur for T > TK
(Fig. 1). This holds if any lower critical point occurs at μ = 0,
which itself is not guaranteed.

● A lower critical point that occurs at μ > 0 would corre-
spond to an avoided transition, which may nevertheless
lead to large static length scales in the spirit of geometric
frustration.36

VII. CHALLENGES AND OUTLOOK
An obvious numerical challenge is to increase the system sizes

that can be addressed with the current method. Sampling fluctua-
tions becomes exponentially more expansive as the number N of
particles and the length tobs of trajectories are increased. In itself,
this is not a fundamental problem as finite-scaling is a valuable tool
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in computational statistical mechanics that allows us to systemati-
cally extrapolate the thermodynamic limit behavior. Still, for reliable
finite-size scaling, one would like to cover at least on order of mag-
nitude in both N and tobs, which is still out of reach at the moment.
One step in this direction has been taken recently for polydisperse
hard spheres,17 where the trajectory length has been varied. Comple-
mentary numerical methods such as population dynamics75 might
be helpful here.

Recently, it has been shown that popular model glass formers
such as the binary Kob–Andersen mixture discussed here crystallize
in very large simulations.77,88 The mechanism is through sponta-
neous composition fluctuations that yield domains of one species
large enough to overcome the nucleation barrier to crystallization.
Such compositional changes are not accessible in the small systems
we studied. It is possible that the dynamic phase diagrams presented
in Fig. 12 are metastable with respect to crystallization. This is not
a fundamental limitation since virtually any physical supercooled
material is metastable with respect to crystallization, and our aim
is to gain insight into the vitrification mechanism.

A related issue is that the buildup of structural correlations
in the structure-rich inactive state has repercussions on the ori-
entational correlations as well. Since only relatively small systems
of some hundreds of particles can—with the present numerical
methods—efficiently sample the structural–dynamical transition at
low temperatures, the emerging orientational correlations involve
the entirety of the sampled regions of space once the structure-
rich state is accessed. It is interesting to note, however, that finite-
size and compositional constraints prevent structure-rich config-
urations from forming complex equilibrium crystalline structures
such as the Laves phases of polydisperse hard spheres89 or crystalliz-
ing like binary glass formers.77 Nevertheless, the proximity of these
structural transitions can be expected to shape the dynamic phase
diagram.

In the context of connecting to the Kauzmann paradox of
the converging configurational entropy of a supercooled liquid
and its crystal at low temperature, it would be interesting to
explore the methods outlined in a system with a well-defined crys-
tal. We expect that the active–inactive dynamical phase transition
would be bounded by the liquid-crystal lines in the temperature-
configurational entropy plane, as sketched in Fig. 1. While this may
seem challenging with some of the models reviewed here as they
have no known crystals of the same stoichiometry of the system,
the tantalizing promise of a model system with a well-defined local
structure and crystal whose configurational entropy could be evalu-
ated would be a most interesting prospect. One possibility is metal-
lic glass formers, represented through the embedded atom model.
These are reasonably resistant to crystallisation,77 and the crystal
phase diagram has been determined.90

Clarifying the relationship between the local structure, local
configurational entropy, and mobility excitations appears as a key
task for a more complete theory of dynamic arrest. This will
include developing a systematic framework for coarse-graining the
model-specific aspects and predicting physically relevant quanti-
ties, such as the activation energies advocated by the dynami-
cal facilitation or the size and shape of the cooperatively rear-
ranging regions of the RFOT/Adam–Gibbs scenario. Ensembles
analogous to the μ-ensemble can be devised for other quantities,
which have been defined to quantify glassy systems, including soft

spots,91,92 aggregated softness fields,93 two-body excess and patch
entropy,26,94,95 local bonding and packing,96 and community infer-
ence,97 and may help to elucidate the relationships between these
different descriptors of glassy heterogeneities and their relationship
with the dynamics.

VIII. CONCLUSIONS
The notion of metastability implies local equilibrium on finite

timescales.98 Supercooled liquids are metastable disordered states
with complex energy landscapes whose topology is believed to influ-
ence the emergent relaxation patterns.99 Here, we have revisited
recent results that connect purely dynamical and thermodynami-
cal descriptions of glassy behavior within a particular framework
designed to deal with metastable states, i.e., the theory of large devi-
ations of structural and dynamical observables. The key outcome
is that over suitably long observation timescales, the dynamics of
supercooled liquids explores trajectories that can be characterized
either by high mobility and modest structural order or low mobil-
ity and enhanced local structural features. Interestingly, a first-order
transition in trajectory space can be associated with this behavior,
and it is common to different models of structural glasses, i.e., addi-
tive and non-additive Lennard-Jones mixtures and purely repulsive
size-dispersed hard spheres.

Most importantly, the transition is strongly affected by decreas-
ing the temperature: at lower and lower temperatures, the inactive,
structure-rich trajectories are less and less distinguishable from the
active, structure-poor ones. A characterization of the energy land-
scape explored by the two dynamical phases shows that while the
active trajectories sample relatively high energy and entropy regions,
the inactive ones explore a narrow region of low energy and low
entropy. This observation of the merging of the two dynamical
phases at low temperature enables us to suggest that it may be pos-
sible to bring together the dynamical phase transition of dynamic
facilitation with the mosaic of low entropy regions of the Adam–
Gibbs/RFOT scenario. The population of locally favored structures
per trajectory is then used as a reaction coordinate to explore
metastability as it couples at the same time with inherent state
energies and particle mobility.

Considering the “Kauzmann plot” (Fig. 1), we see that the inac-
tive phase plays a role similar to that of the crystal, with a small
configurational entropy which slowly reduces as a function of tem-
perature. Small as it is, the configurational entropy of the inactive
phase is somewhat higher than that of the crystal, so merging of
the two dynamical phases is expected at a temperature higher than
TK. A lower critical point where the phases merge would have struc-
tural and dynamical characteristics, such as diverging timescales and
length scales, which are also anticipated in thermodynamic theories
of the glass transition.
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