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Scattering . 3 Light 
 

3.1 Zimm Plots 
  

From the previous discussion we can see 
that fluctuations are the basic source of 
scattering for polymers in solution and we 
can derive an expression for the 
scattering in terms of polymer molecular 
weight (M), radius of gyration  Rg) and the 
second virial coefficient B. 

1 2 [2.27]Kc Bc
R Mθ

= +  

in the Flory Huggins theory B is 
equivalent  to ½ - χ    and is a measure of 
the strength of the  polymer solvent 
interaction energy  as in the figure. If   B < 
0 the polymer expands [good solvent] and 
if B > 0 the coil contracts [poor solvent]. 
The idea; value is ½ . Equation [2.27] is 
good if the coil is small and there is no 
structure factor present. If we need the 
P(Q)term which is the normal case  
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For a polymer coil in solution  [2.27] becomes  
 

221 2 1 [3 .1]
3

GQ RK c B c
R Mθ

⎡ ⎤⎡ ⎤= + +⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
 

 this equation is very useful as it implies we can also measure the radius of gyration 
(Rg) of the polymer at the same time. The way this can be done (conventionally) is to 
obtain a set of data at different concentrations and over a range of Q values. The 
data can be plotted then as below 

with the ordinate as 
K c
Rθ

 and the abscissa as  c + βQ2     where β is a scaling 

constant chosen to make the both terms of similar magnitude. Inspecting [3.1] you 
can see that by extrapolating to  Q ⇒ 0 the second term vanishes and extrapolating 
to c ⇒ 0 the first term tends to 1/M.{hence get M) at fixed c the slope vs. Q2 is RG

2/3 
and at fixed Q2  the slope vs c is 2B. Hence by this quirky 2D plot we get all three 
parameters. The Zimm analysis can be used very effectively with neutrons and X-
rays as well as light. 

Mie Theory 
When the particle and wavelength of light are comparable or the scattering becomes 
very complex and the scattering is strongly biased in the forward direction: The 
results below [Left  Hand] are for a 600nm sphere with λ =  632.8 nm and  an index 
of refraction is 1.5. The big difference with this scattering is the extent of forward 
scattering, which continues to increase as the particle gets bigger;  which is not 
obvious (to me anyway). The Right Hand  figure shows the same calculation for a 
50nm particle which behaves like a Rayleigh scatter as before. The following web 
page has a live program for these calculations so you can try these yourselves. 
Unfortunately the maths required for this is Einsteinean and only works at present for 
spheres. 
http://omlc.ogi.edu/calc/mie_calc.html 
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Structure Factor 
So far we have dealt with dilute dispersions such that there is no interparticle 
interference.  However, when the interactions between particles are strong enough 
or the dispersion is sufficiently concentrated then these affects appear. In this case 
we must modify our basic scattering equation by adding the structure factor , S(Q). 

( ) . ( ). ( )I Q A P Q S Q=   [3.2] 
S(Q)  is directly related to another function called the radial distribution function. 
g(r ) which give us the probability of finding another particle within a distance r. 
Below is a simulated hard sphere liquid at high density and low density. At the lower 
density the peaks are slightly further apart.  
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g(r) is directly related to the number concentration in the system , Np 

( ) ( ) / pg r N r N=  [3.2] 
where N(r) is the number concentration  of particles at a distance  r from a reference 
particle. We can relate the relative separations of the particles to the potential of 
mean force  that exist between them, Φ(r) : (The reversible work theorem)* 

( ) exp[ ( ) / )= −Φ Bg r r k T   [3.3] 
and Φ(r)can be written as a sum of the pair potential between two particles V(r) and 
a perturbation  ϕ(r)  which account for many –body interactions: ( ) ( ) ( )r V r rϕΦ = +  
In the limit where ( ) 0 then ( ) 0→ →N r rϕ  
One simple model is that of the hard sphere as shown above where the potential 
becomes infinite when the particles overlap. However  in colloidal dispersions results 
suggest that the ‘effective hard sphere radius is larger than the actual geometric 
radius (Eeffective ). 
Mathematically we can relate g(r) to S(Q) 
 

                                            
* See Chandler Introduction to Modern Statistical Physics OUP  1987 p 201 
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S Q g r r Qr dr
Q
π ∞

= + −∫   [3.4] 

This looks grim but it is just a Fourier Transform. We shall need this procedure in the 
next lecture so we shall spend a short time going over it in the next lecture. 
S(Q) can be complicated function, but  typically the form is as given below again for  
a hard sphere system for 2 different concentrations of 100 nm spheres. The position 
of the maximum depends inversely on the particle concentration so the more 
concentrated dispersion has a its first peak at higher Q. 
 
These calculations where performed with the Lekner hard sphere model based on 
The Perkus Yevick model for liquids (Phys Rev 145 83 (1966), where the structure f 

factor is given by 
 

1( )
[1 (2 )p effective

S Q
N C QR

=
−

 [3.5] 

 
 and the function C  is an integral over all values of  effectiveQR from 0 to 1 .  
We shall look at more structure factors when we look at charged micelles. 
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