Scattering . 1 Basics

1.1 Recommended Books:

1] B.Chu Laser Light Scattering 2nd Ed. Academic Press 1991

2] R. J. Hunter Foundations of Colloid Science 2nd Ed Oxford 2001

3] H. R.Cruyt Colloid Science Vol. I Elsevier 1952

4] M. Kerker *The scattering of light and other electromagnetic radiation* Academic Press 1969.

5] R. Richards Scattering Methods in Polymer Science Ellis Horwood 1995

Classical papers

6] Rayleigh L. Nature 3 234 [1871] 7] Debye P., Ann. Physik. 30, 57 [1909]

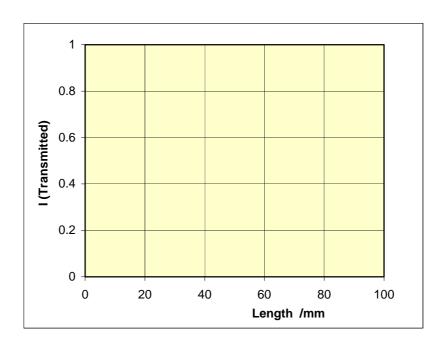
8] Mie G., Ann. Physik. [Leipzig] 25, 377 [1908]

9] A, Guinier X-ray diffraction In Crystals (1963) etc. Dover [1994]

1.2 Definitons:

Light is absorbed, transmitted or scattered: $\lambda \approx d$ diffraction $\lambda \ll d$ refraction (d particle diameter) I_{θ} scattered intensity at an angle θ ; I_{0} incident; I_{T} transmitted $\tau = I_{T} / I_{0}$ [1.1] Beer Lambert Law: $I_{T} = I_{o} \exp(-\varepsilon c \ell)$ [1.2] c/concentration, ε /extinction coefficient.

scattered intensity



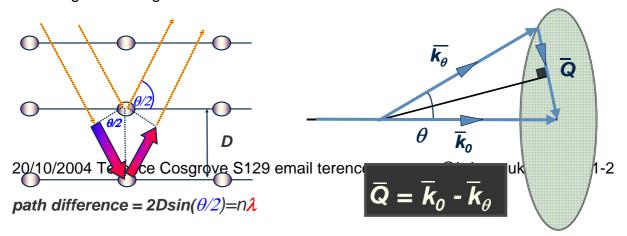
1.3

Elastic scattering

Only changes in momentum transfer vector \overline{Q} : energy[λ] is fixed: n=1 $\overline{Q} = \overline{k_o} - \overline{k_\theta}$ $k_o = k_\theta = 2\pi/\lambda$ $Q^2 = (\overline{k_o} - \overline{k_o})^2 = 2k_o^2 - 2\overline{k_o}\overline{k_o} = 2k_o^2(1 - \cos(\theta))$ $Q = \frac{4\pi}{\lambda}\sin(\theta/2)$ [1.3] $Q^2 = 2k_o^2(2\sin^2(\theta/2))$ Also $c = v\lambda$ $v = f\lambda$ [1.4} Inelastic $k_0 \neq k_\theta$ quasielastic $k_0 \approx k_\theta$ **1.4 Radiation types:** Sound $v = 330 \text{ m s}^{-1}$ f = 1Hz - 30 kHz $\lambda = 0.1m - 330m$ Light $c = 3.0 \times 10.8 \text{ m s}^{-1}$ $v = 7 \times 1014 - 4 \times 1014 \text{ Hz}$ $\lambda = 434 - 768 \text{ nm}$ Neutrons $v = 4000 - 400 \text{ m s}^{-1}$ $m_N = 1.675E-27 \text{ kg}$: $\lambda = 0.1 - 1 \text{ nm}$ X-rays $c = 3.0 \times 10^8 \text{ m s}^{-1}$ $v = 3 \times 10^{18} - 3 \times 10^{17} \text{ Hz}$ $\lambda = 0.1 - 1 \text{ nm}$

1.5 Bragg's Law

 $n\lambda = 2D\sin(\theta/2)$ [1.5]: Interference when phase difference is an integer number of wavelengths as in figure below.



1.6 Rayleigh Scattering

The conditions for Raleigh scattering (1871) from individual particles diameter d is that $d < \lambda/20$ and refractive index, $n \approx 1$

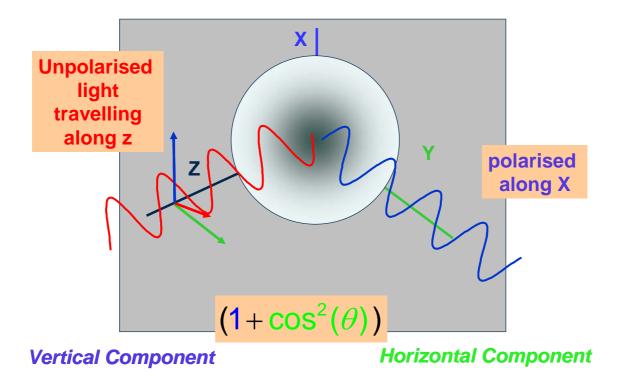
(a) Polarisation of light.

$I_o = I_{Horizontal} + I_{Vertical.}$ [1.6]

Unpolarised light travels along *z* (see figure). The polarisation can broken up into a horizontal (y) component and vertical (x) component. The scattered wave also has a polarisation components along x and y but viewed along the y axis (the propagation direction) there is only one component remaining the x vertical component which is still normal to the propagation direction. Scattering depends on the polarisability α .

$$\mu = \alpha E$$
 [1.7]

 μ dipole moment, *E* Electric field strength. α is large if the HOMO-LUMO energy gap is small.



(b) Dimensional analysis:

Scattering of light is due to electrons so $I \sim f(\alpha)$. It also must depend on the wavelength of the light, λ and the distance of the observer from the scattering body and the relative refractive indices $m=n_p/n_o$ of the particle (*p*) and the medium (*o*)

$$I_{\theta} = I_0.f(\alpha, r, \lambda, n_p, n_o, \theta)$$
 [1.8]

20/10/2004 Terence Cosgrove S129 email terence.cosgrove@bris.ac.uk

When light falls on a particle it induces a dipole moment which is proportional to the polarisability, α . The scattering field, \overline{E} , is then proportional to α . Classically α is described by the Lorentz-Lorentz equation when there is no permanent dipole:

$$\alpha = 4\pi\varepsilon_0 a^3 (m^2 - 1)/(m^2 + 2) \quad [1.9]$$

a is the radius, $m=n_p/n_o$ and ε_o is the vacuum permittivity. So \overline{E} is proportional to volume a^3 , so the Intensity which is proportional to $E^2 \propto \alpha^2 \propto a^6$. The Inverse square law shows us that $I \propto r^{-2}$

So combining these gives $I_{\theta} \propto I_0 a^6 r^{-2} f(\lambda, n_o, n_o, \theta)$ [1.10]

 I_{θ} / I_0 is dimensionless as implies that $I_{\theta} \propto \lambda^{-4}$ [1.11] $I_{\theta} \propto \frac{I_0.a^6}{r^2 \lambda^4} f(n_p, n_o, \theta)$ [1.12] Hence.

are the values of *n* so this

1-4

So the intensity of the Rayleigh scatterer depends on frequency v^4 and this explains many astronomical observations- why the sky is blue, the green flash etc.

(c) Angular dependence.

The polarisation as we have seen in angle dependent and at 90[°] to I_o the light is completely plan polarised. The intensity must also be positive and a function which gives this is $(1 + \cos^2(\theta))$ where '1' is the vertical component and $\cos^2(\theta)$ is the *horizontal component.* So combining this with [1.12] and [1.9] gives the full Rayleigh expression:

$$\frac{I_{\theta}}{I_{0}} = \frac{9\pi^{2}(n_{\rho}^{2} - n_{o}^{2})^{2}}{2r^{2}\lambda^{4}(n_{\rho}^{2} + 2n_{o}^{2})^{2}}V_{\rho}^{2}N_{\rho}(1 + \cos^{2}(\theta)) \quad [1.13]$$

where V_p is the particle volume and N_p is the number of particles per unit volume

NB Distance $\sim 1/r^2$ Frequency $\sim 1/\lambda^4 \sim v^4$ Size $\sim V_p^2 \sim a^6$ Concentration $\sim N_p$ Refractive index $\sim \Delta (n^2)^2$ difference

