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Scattering . 6 Inelastic scattering 

Inelastic Scattering. 

Light can also be scattered inelastically and if we use a very monochromatic light 
source we can see very clear evidence of energy (frequency changes) in the 
scattered light spectrum. The figure below which is not to scale show Brouillon 
scattering (from phonons) and Raman scattering from vibrations. 

 

Photon Correlation Spectroscopy 
[1]   K. J. Randle  Chemistry and Industry 19 74-81 [1980]  
[2] S.J. Candau in Scientific Methods for the Study of Polymer Colloids and their 
Applications, Ed. F. Candau and R. H. Ottewill, Kluwer, [1990] 
 
In PCS the scattered light intensity is modulated by the Brownian motion of the 
diffusing particles and the laser linewidth is broadened.  By examining the spectral 
width Γ / Hz of the scattered light the diffusion of the particles can be measured.  
One simple approach is to use an analogy to  the Doppler effect: the shift in 
frequency suffered by light scattered from a moving particle.  Suppose a particle 
moving with a velocity u – 3 cm s-1 is illuminated by red light from a helium-neon 
laser of wavelength 633 nm  (a frequency of 5 x 1014 Hz).  This fractional shift in 
frequency is approximately u/c or 1 x 10-10.  The equivalent shift in frequency is very 
small and leads to a line broadening  of the order of 10 to 10000 Hz. The detection of 
this change can be done using a photomultiplier which detects the difference 
frequency between the incident light and the scattered light.  

Measurements and Fluctuations 
As we saw before that scattering is due to fluctuations in refractive index/dielectric 
constant which are proportional to fluctuations in concentration. In PCS we are 
interested in both the Q and time dependence of these fluctuations  δc(Q,t).   
In practise we measure these fluctuations in concentration in the time domain: 

QELS ~ 5 x 1014Hz
Quasi-elastic

Brillouin ~ 109Hz {Shift}
Inelastic

Raman ~ 1013 Hz {Shift}
Inelastic
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( ). ( ) ( , )I t I t c Q tτ δ+ ∝  [6.1] .This can be envisaged as the light falling on the detector 
varies randomly due to the Brownian motion of the observed particles. The 

instantaneous velocity of the particle v will 
be damped by the viscous force of the 
surroundings so using Newton’s law for force  
F = ma [6.2]   where m is the mass of the 
particle and a its acceleration. The viscous 
force is the Stokes force 

 6 HF Rπη=  [6.3]   where η is the viscosity 
of the medium and RH  is the hydrodynamic 
radius of the particle .Hence 

6dvm av
dt

πη=− [6.4] whose solution is  

exp( / ) where / 6o B Bv v t m aτ τ πη= − = [6.5]  
τB  is the Brownian  relaxation time which for 

a 100nm polystyrene  particle in water is ~ 5.8 x 10-10 s. This is the typical time for 
which this particular velocity persists. Collusions and frictional dissipation see to it! 
We measure these fluctuations as a speckle pattern. 
The signal falling on the detector is an a direct measure of these fluctuations 

Correlation functions:- 

The correlation function is defined as follows:
0

1(0) ( ) ( ) ( )lim
T

T
I I dt I t I t

T
τ τ

→∞

= +∫  [6.6] 

where τ is the correlation time and the average is taken over the time interval T in 
the limit as T tends to infinity. We van define another correlation function ( , )sG r t  as 
the total self-correlation function. It is essentially the probability that a particle at 

0 ( ) ( )r at t is at r r at t tδ δ= + +   [6.7] 
For isotropic motion ( , )sG r t  is the solution of the 3-dimensional diffusion equation 

 
2

2

( , ) ( , ) [6.8]s sG r t G r tD
t r

∂ ∂
=

∂ ∂
 

which is one of Fick’s Law, 
where D is the diffusion 
coefficient . For motion in 3D 

2 / 6D r t=< >  [6.9] 

The form of ( , )sG r t is a 
gaussian which is 
characteristic of random 
motion.   
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2
3 / 2

1( , ) exp( / 4 ) [6.10]
(4 )sG r t r Dt

Dtπ
= −  

In 1 dimension the solution is a gaussian function as before in distance [x]   and we 
can write an analogous equation for the propagation of the fluctuations due to 

diffusion:  2
0.5( , ) exp( / 4 ) [6.11]

(4 )
Ac x t x Dt

Dt
δ = −  

where D is the diffusion coefficient and A is a constant.  On scattering we require a 
solution in Q space which is reciprocal to x. By Fourier transform  we can convert the 
representation: 

2
0.5

'( , ) exp( / 4 )exp( ) [6.12]
(4 )

Ac Q t x Dt iQx dx
Dt

δ
∞

−∞

= −∫  

This is a standard Integral:  
0.5 2

2 2
2exp( ) exp

4
qp x qx dx

p p
π∞

−∞

⎛ ⎞
− + = ⎜ ⎟

⎝ ⎠
∫  

2 0.5 21/ 4 ( , ) ' exp( )p Dt and q iQ then c Q t A Q Dtδ π∴ = = = −   [6.13] 
Initial conditions 0 ( , ) ( ,0)t c Q t c Qδ δ= = 2( , ) ( ,0)exp( ) [6.14]c Q t c Q Q Dtδ δ∴ = − i.e. 
in Q space we see an exponential decay of the concentration fluctuation with a time 
constant  2 = 1/( ) Q Dτ [6.15].  A further insight into this is to Fourier transform [6.16] 
into the frequency domain [i.e. a reciprocal of time c.f. Q and x].  
 
This gives a Lorentzian in the frequency domain: 

. 2 2 2

1( , ) ( , )
1 ( )o

o

c Q c Q
Q

δ ω δ ω
ω ω

=
+ −

 [ 6.17] with a full width at half-height of  

22 /2  Q D π  Hz.  
 
 
 
 
 
 
 
 
 
 
 
 
A closely related parameter is the normalised autocorrelation function 
g(2)(Q,τ) 

(2)
2

( ,0). ( , )
( , )

( )

I Q I Q
g Q

I Q

τ
τ =    [6.18]  which tends to 1 as τ  tends to infinity 

and so we often define  g(1)(Q,τ)= g(2)(Q,τ) – 1. ~ exp(-DQ2τ) [cf  6.14] 
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Particle size measurements 
One of the major uses of PCs is to measure particle size and this can be  done 
directly through measuring the correlation time τ and hence the diffusion coefficient   
and using the Stokes Einstein Equation:  

6
B

H

kTD
Rπη

=  [6.15] 

If the sample is polydisperse then we see a distribution of  exponentials [6.14] and 
this is not easy to separate though various averages of the particle size distribution 
can be found.  If is the system is bimodal then two populations can be elicited. 

Adsorbed layer Thickness 
A simple extension of this idea is 
to measure the size of a colloidal 
particle before and after 
adsorbing a polymer. This then 
gives us a way of finding the 
hydrodynamic layer thickness.  
 

Polymer solutions. 
Polymer solutions can also be 
studied but this requires a 
modification of the simple Stokes 
Einstein equation [6.15] above 
as both D and the friction coefficient are functions of concentration. Equation [6.15] 
is basically the balance between the energy available and friction f(c) 

( )
( )

kTD c
f c

= B   [6.16] . Osmotic pressure is the driving force for diffusion as before so 

we need to expand this equation in both D  and f.  This gives us the following result 
m 2D (1 {2 } )o w fmD A M k c= + −  [6.17] Where A2  is (1/2 - χ) as before and kfm  is the 

mutual friction coefficient. Hence D can increase or decrease with concentration 
depending on the solvent quality. 

  

Measurement of the Hydrodynamic Thickness
by Photon Correlation Spectroscopy
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