ORIGINAL PAPER

Development of a safe antiparasitic against scuticociliates (*Miamiensis avidus*) in olive flounders: new approach to reduce the toxicity of mebendazole by material remediation technology using full-overlapped gravitational field energy

Jung-Soo Seo¹ • Na-Young Kim² • Eun-Ji Jeon² • Nam-Sil Lee² • En-Hye Lee³ • Myoung-Sug Kim² • *I*. - Je Kin Sung-Hee Jung²

Received: 5 March 2018 / Accepted: 6 July 2018 \odot The Author(s) 2018

Abstract

The olive flounder (*Paralychthys olivaceus*) is a representative farmed fish species in Sou. Korea, which is cultured in land-based tanks and accounts for approximately 50% of total fish farming rodu ion. However, farmed olive flounder are susceptible to infection with parasitic scuticociliates, which cause scution in a disease resulting in severe economic losses. Thus, there has been a longstanding imperative to develop a multiply stable and effective antiparasitic drug that can be rapidly administered, both orally and by bath, upon infec. with scuticociliates. Although the efficacy of commercially available mebendazole (MBZ) has previously been established, this compound cannot be used for olive flounder due to hematological, biochemical, and histopathological side effects. Thus, we produced material remediated mebendazole (MR MBZ), in which elements comprising mole ule were remediated by using full-overlapped gravitational field energy, thereby reducing the toxicity of the paint material. The antiparasitic effect of MR MBZ against scuticociliates in olive flounder was either similar to or higher, an that of MBZ under the same conditions. Oral (100 and 500 mg/kg B.W.) and bath (100 and 500 mg/x) at unstritions of MBZ significantly (p < 0.05) increased the values of hematological and biochemical parameters, hereas use values showed no increase in the MR MBZ administration group. In addition, there were no histopa hole, cal side effects, such as atrophic degeneration or hyaline droplet degeneration, whereas these were observed when MZ was administered. Thus, we report that the material remediation method using full-overlapped gravitational field energy can be used to reduce drug toxicity.

Keywords Mebendazole · Parasite Scuticocmate · Olive flounder · Material remediation technology

Jung-Soo Seo and Na-Young im first authors. These authors contributed equally to this work

Section Editor: Sh koo Shamsi

Electronic supplementary aterial The online version of this article (https://doi v/1 1007/s00436-018-6010-8) contains supplementary material, why savai ble to authorized users.

- ¹ Aquatic Life Disease Control Division, Aquaculture Research Department, National Institute of Fisheries Science, 216, Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 46083, Republic of Korea
- ² Pathology Research Division, Aquaculture Research Department, NIFS, 216, Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 46083, Republic of Korea
- ³ Ministry of Food and Drug Safety, Busan Regional Office of FDS, Center for Food & Drug Analysis, 65, Sinseon-ro 356 beon-gil, Nam-gu, Busan 48562, Republic of Korea
- ⁴ The Asia Pacific Earth-Life Environment Remediation Association, 1494, Yangjae-daero, Gangdong-gu, Seoul 05343, Republic of Korea

Introduction

The olive flounder (Paralychthys olivaceus) is a representative farmed fish species in South Korea, which is cultured in land-based tanks and accounts for 50% of total fish farming production (KOSTAT 2017). Scuticociliatosis, a parasitic disease caused by invasive ciliates (class: Scuticociliatida), has the largest detrimental impact on the production of this fish. Since 1986, when it was first detected in farmed olive flounder in Japan, scuticociliatosis has been reported to cause mass mortality mostly in fry and juveniles (Yoshinaga and Nakazoe 1993; Moustafa et al. 2010). In South Korea, scuticociliatosis was first identified from an olive flounder farm in Jeju Island in 1990, and now causes serious economic damage to the olive flounder farms nationwide every year, showing a mortality trend similar to that in Japan (Jin et al. 2003, 2007; Kang et al. 2015). Some 46 to 57% of the recent cumulative damage has been attributed to scuticociliatosis (Kim et al. 2012; Jee et al. 2014). Therefore, scuticociliatosis is a serious infectious parasitic disease that needs to be efficiently controlled in the early stage of olive flounder farming.

Since the first report of scuticociliates as parasites of seahorse (Hippocampus erectus), they have been reported to infect species in various taxonomic groups of marine animals, causing serious damage. Representative examples of the species affected by scuticociliates are as follows: Uronema marinum in nine species (California sheepshead wrage Pimelometopon pulchrum; cunner Tautogolabrus adsp rsus. Atlantic sea horse Hippocampus erectus, Indo-Proific a horse H. kuda, garibaldi Hypsypops rubicunda, te drop bu, terfly Chaetodon unimaculatus, diagonal butte, fly uriga, copper-band butterfly Chelmon rostratus, 2 nd royal coa aman Heniochus acuminatus) that are cultured in aquaria (Cheung et al. 1980); Philasterides dicentrachi in t. ot (Scophthalmus maximus) and sea bass (Dicentral Lys labrax) (Ramos et al. 2007; Budino et al. 2012); Anophivor. Laemophila in the American lobster (Homay mericanus) (Cawthorn 1997; Athanassopoulou et al, 2)4); ¹ nigr.cans in southern bluefin tuna (Thunnus maccoyii) (. inday et al. 1997); Uronema sp. in silver pomfret (). *"pus ars enteus*) (Azad et al. 2007); and Miamiensis oviaus in vrfin flounder (Verasper moseri) (Ito and Kasai 2015). In Sourn Korea, M. avidus (= synonym of P. dicentrarc, in clive flounders was identified as the dominant specievith a chongest pathogenicity (Jee et al. 2001; Kim 1 20 14. Jung et al. 2007; Song et al. 2009). Scuticoiliates £. inva and infect not only the surface of the body or gills but also in mal organs (e.g., brain, kidney, spleen, spinal cord), and therefore it is imperative to prevent the brain or internal organs from becoming infected by these parasites through prompt treatment following early diagnosis (Jin et al. 2009; Harikrishnan et al. 2012).

Drugs/chemicals that are known to date to have antiparasitic activity on scuticociliates include trichlorphon, pyrimethamine + sulphaquinoxaline, amprolium, monesin, doxycycline, oxytetracycline, formalin, copper sulfate, hydrogen peroxide, antiprotozoals, fluoroquinolones, indomethacin, Jenoclean (97% zeolites + 3% citric acid), resveratol, and benzalkonium chloride + bronopol (Novotny et al. 1996; Iglesias et al. 2002; Jee et al. 2002; Quintela et al. 2003; Paramá et al. 2004; Paramá et al. 2007; Harikrishnan et al. 2010; Jin et al. 2010; Budino et al. 2012; Park et al. 2014). However, most studies on these drugs/cher icals have been based on in vitro experiments to test efficact increases there have been few studies that have demonstrated the antiparasitic effects through both in vitro a. in vive experiments. For olive flounder farms in Soun Ko. the government granted item permissions for he use of formalin (37% formaldehyde) in 2006 and hy frog peroxide (35% hydrogen peroxide) in 2015, and the agenus were proven to be effective by multiple st dies (cn. 2bove) as aquaculture drugs to treat scuticor lia. infection, and were subsequently commercialized (NTES 2016 Although these antiparasitic bath treatmer we effective in controlling external scuticociliate in. on to some degree, it was impossible to treat scuticociliate ection of internal organs using these drugs. Thus, has been a longstanding urgent need to develop a highly safe and effective antiparasitic drug that be used via both oral and bath administrations in olive flou. er farms.

Mc bendazole (MBZ, Fig. 1), a synthetic benzimidazole, ha been used worldwide as an anthelmintic in both human and veterinary medicine to effectively treat various helminth infections (Choi et al. 2014; Werff et al. 2014). In addition, MBZ has antiparasitic effects on monogeneans that are parasitic on the gills of various freshwater and marine aquatic species, such as the common carp (Cyprinus carpio), European eel (Anguilla anguilla), goldfish (Carassuis auratus), tambaqui (Colossoma macropomum), and black rockfish (Sebastes schlegeli) (Goven and Amend 1982; Buchmann et al. 1993; Kim et al. 1998; Waller and Buchmann 2001; Chagas et al. 2016). Furthermore, MBZ has also been used to effectively exterminate microsporidia in sticklebacks (Gasterosteus aculeatus) (Schmahl and Benini 1998). In contrast, MBZ was shown to be ineffective against eel nematodes (Taraschewski et al. 1988) and monogeneans in red porgy (Pagrus pagrus) (Katharios et al. 2006). Similarly, an in vitro study on the antiparasitic effect of MBZ on P. dicentrachi isolated from farmed turbot and sea bass revealed no active efficacy (Iglesias et al. 2002). To date, however, there have been no reports on the antiparasitic effect of MBZ on M. avidus isolated from olive flounders.

The mechanism underlying the antiparasitic action of MBZ is the inhibition of microtubule formation, which selectively and irreversibly inhibits the glucose uptake of parasites in the intestines (Laclette et al. 1980; Barrowman et al. 1984). To date, information about the activity or toxicity of most

Fig. 1 Structure of mebendazole

molecular drugs, including MBZ, has been obtained through molecule–molecule interactions with other molecules such as drug targets (including enzymes, receptors, and nucleic acids) in the body or pathogens. In contrast to this molecular approach, we, for the first time, approached the problem of MBZ toxicity from the perspective of the individual elements comprising molecules. In other words, the molecular formula of MBZ, an organic compound, is $C_{16}H_{13}N_3O_3$, and the molecule composed of C, H, O, and N was altered by remediation of each element, which had no effect on interactions with known targets. Subsequently, MR MBZ was produced, which retained the efficacy of the parent material, but had lower toxicity, as demonstrated experimentally.

Chemical elements comprise all matter (including living organisms). Newton's law of universal gravitation explains that there are gravitational forces between all objects. These mutual gravitational forces confer energy to the interacting objects. For example, there is gravity between the earth and the moon, and each has an influence on the other through energy exchange. In this case, elements, molecules, and patter that are at a point on the earth where gravity is working of receive energy that is exchanged by gravity. As there are no merous stars and planets in the universe, theil gravies can overlap, and full-overlapped gravitational field (FOG), energy will be present in the FOGF former in this way. When energy is pulled by the gravity of the early matter containing numerous elements on the earth w¹¹ receive the energy. It is predicted that this occurs mostly hread the non-material parts (coexisting with matter of matter that are mostly unexplored, and FOGF energy recution via the non-material part could improve the prateria. Int of matter, which would contribute to normalize ion of the material part. Hence, it was hypothesized that the vicity of molecules in living organisms after administration of elements that are unable to normally rece. rOG energy via the non-material part would be received a making FOGF energy reception normal. R and an this hypothesis, we were able to develop MR MB. using FOGF energy, which retained the efficacy of MBZ b, a had lower toxicity, as confirmed experimentally.

To develop an antiparasitic drug that can be used for both oral and bath administration against pathogenic scuticociliates isolated from olive flounders, we selected a total of 19 antiparasitic drugs, including MBZ (commercially available mebendazole), identified through a literature review and database searches for animal drugs, and performed in vitro tests,

which indicated that MBZ was the most effective. Subsequently, although in vivo experiments on MBZ showed a clear antiparasitic effect against scuticociliates, apparent histopathological degradation was observed in the liver and kidney of olive flounders, and there were significant increases in hematological parameters, including glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, and alkaline phosphatase, which are indicators of hepatotoxicity To address these side effects, we attempted to remove MPZ toxicity using a completely different new method, which rated in the production of material remediated MBZ (MR ML inat retains MBZ efficacy but is less toxic. effect of this derived product were subsequently compared with those of the commercially available MBZ, and it was consequently found that MR MBZ maintair ed efficacy of MBZ but had lower side effects.

Materials ar d n ethods

Isolation and sub. Iture of scuticociliates (ciliates)

The ciliates used in this study were obtained from the Chology Lesearch Division of the National Institute of Fish, ees Science (NIFS). The ciliates, which were identified *M. avidus* using species-specific oligonucleotide primers reported by Seo et al. (2013), were isolated from the ascitic duids of olive flounders in a local farm that had suffered mass mortality, followed by continuous subculture in the laboratory. For subculture, ciliates were inoculated into a culture of the CHSE-214 (Chinook salmon embryo, ATCC CRL 1691) cell for 3–5 days at 22 °C. The CHSE-214 cell line was maintained in Eagle's minimum essential medium (MEM; Sigma-Aldrich, USA) containing 10% heat-inactivated fetal bovine serum (FBS; Gibco, USA) at 20 °C under aseptic culture conditions to grow the ciliates.

Candidate antiparasitics

The 19 candidate antiparasitics included six types of benzimidazoles (albendazole, febantel, fenbendazole, MBZ, oxfendazole, and oxibendazole), three types of avermectin derivatives (abamectin, ivermectin, and selamectin), and levamisole, tetramisole, benzyl benzonate, clorsulon, deltamethrin, imidacloprid, moxidectin, piperazine, pyrantel, and trichlorfon. These were all used as pure reagents from Sigma-Aldrich (USA) at 98%–99% active concentrations. Stock solutions (1000 mg/L) of the antiparasitics were prepared by dissolving in dimethyl sulfoxide (DMSO; Sigma-Aldrich, USA). The stocks were maintained in a refrigerator at 4 °C prior to use in in vitro efficacy tests.

Score	Interpretation								
	Motility	Morphology							
3 (high effect)	No sign of mortality or cilia movement	Extensive lysis with few cells intact							
2 (moderate effect)	More than 50% of ciliates stationary, but cilia still beating	Cells stationary and irregular; more than 50% of cells round and lysis evident							
1 (low effect)	Slowly motile, showing in more than 50% of ciliates; approximately 50% of ciliates stationary, but cilia still beating	Cells round; less than 50% of cells round or irregularly shaped; approximately 50% of cells round or irregularly that ed							
0 (no effect)	Highly motile or normal	No change; cells elliptical							

Table 1 Scoring system for assessing compounds for in vitro efficacy against Miamiensis avidus from olive flounder

In vitro antiparasitic efficacy

The ciliate-inoculated CHSE-214 cell and sterilized artificial seawater (20%) was cultured at 22 °C in an incubator. After 3-5 days, the ciliates had proliferated to a sufficient number for in vitro efficacy analysis. Efficacy was assessed after mixing ciliates, which grew with sufficient amounts of cells as prey, with antiparasitics. In detail, 100 μ L (1 × 10⁵) ciliates cultured in MEM and seawater for 24 h was aliquoted into each well of 96-well plates, and then 100 µL of different concentrations of 19 antiparasitics were dispensed into each of the wells containing ciliates (200 µL in total), followed by mixing. Subsequently, assay mixtures were observed after 1 2, 4, and 24 h under a light microscope (× 200 magnification). Efficacy was assessed based on a modification of the methods reported by Jee et al. (2002) and Jin et al. (2010). In deta th motility and morphology of the ciliates in wells were man. scored as indicated in Table 1. Each efficacy assay repeat ed three times.

Experimental fish and conditions

Juvenile olive flounders were purchased om a commercial farm in Pohang, Korea, y. h underwent disease tests for various fish pathogens, act in virus, parasites), and also had no history of armoiotic Aministration. Two experiments were conducted to bus on the relationship between effects of MBZ treatment again ciliates, and toxicity effect of only MBZ by cral and bath administration. A total of 325 fishes were used. Sin w re selected randomly and divided two group n = 1 and 225). They were fully acclimatized to rgl reinforced plastic aquarium (capacity, 1 ton) f equ, equived with flow-through filtered seawater and aeration in a profe sional rearing room in the NIFS. Prior to experimentation, morphologically sound fish with similar body weights and body lengths were selected, and acclimated to the experimental aquaria. All the fish were hand-fed a commercial fish diet (Suhyup Feed, Korea) once a day at a constant rate of 2% of their body weight during the acclimation. Water temperature during the experimental period was stably maintained at

approximately 20 °C (\pm 1.0), the optimal wate, temperature for olive flounders.

Treatment of fish

Fish (average body eight, $2..2 \pm 3.6$ g) were administered both oral and bacetre eight, $2..2 \pm 3.6$ g) were administered both oral and bacetre eights, in each of which the experimental fish were divide eight five aquarium groups, including a control (= eights). Each group contained 20 olive flounders (200-L aquarium, which were intentionally infected with ciliates (average of 10^5 /fish) through intraperitoneal injection. And 1 day, MBZ was administered by oral or bath treatment in viso test). Thereafter, mortality was measured daily for a to 1 of 20 days, during which time cumulative mortality rates were monitored.

For oral treatment, pharmaceutical feeds were prepared as follows: Commercial powdered mixed feeds were kneaded with distilled water to produce bite-sized amounts for the olive flounders, to which MBZ was added after weighing to give preparations containing 20, 50, 100, and 200 mg/kg body weight (B.W.) of olive flounder. These were prepared similar to herb-type pills and stored in a freezer (-80 °C) prior to experimentation. These were taken from the freezer on the day of the experiment and forcefully administered by single dose into the stomach of each unanesthetized olive flounder using forceps. For bath treatment, olive flounders were bathed for 1 h in the aquaria that were prepared by dilution of MBZ to final concentrations of 20, 50, 100, and 200 mg/L. Thereafter, the fish were transferred to aquaria pre-filled with fresh seawater, and cumulative mortality rates were monitored as described for the oral treatment. All dead subjects were dissected to check for the presence of ciliates in the body. All experiments were performed for MR MBZ in the same process as MBZ. Efficacy was finally determined in terms of the relative percentage survival (RPS) using the following equation (Kang et al. 2013):

$$[\]label{eq:RPS} \begin{split} \text{RPS} &= [1-(\text{percentage of experimental group}/\text{percentage of control group})] \\ &\times 100\% \end{split}$$

For determination of MBZ toxicity, we used a 100 mg/ kg B.W. (mg/L) preparation, which showed efficacy in in vitro and in vivo tests, and a 500 mg/kg B.W. (mg/L) preparation. In this experiment, for both oral and bath administrations, we used six aquarium (250 L) groups, including a control, each of which contained 30 olive flounders (average body weight: 30.5 ± 4.3 g). For oral treatment, pharmaceutical feeds containing MBZ, prepared to provide 100 and 500 mg/kg B.W., were given by single-dose administration as described in in vivo test. For bath treatment, 100 and 500 mg/L MBZ preparations were administered by bathing fish for 1 h. The time point immediately after oral and bath treatments was considered 0 h, and thereafter five olive flounders were caught at 6 h, and 1, 2, 7, and 14 days, for blood collection. Experimental procedures for MR MBZ followed the same process as MBZ. The oral and bath treatments were replicated twice.

Hematological parameters and biochemical analysis

After both oral and bath treatments, fish were used for blood collection. For blood collection, approximately 1 mL of blood was collected from the caudal vessel of the tail of each experimental fish using a disposable syringe $(26G \times 12.7 \text{ mm needle})$ without anesthesia. Of the whole blood, 20 µL was immediately aliquoted intra microtube (Axygen Co. USA, 1.7 mL), treated with 3 µL heparin solution (5000 IU/mL; JW Pharmaceut, Korea), and well mixed. The remaining blood ed in a separate microtube. The microtule containing whole blood was incubated at room temperature 1, approximately 2 h, and was then placed in a refrigerator (4 °C) for 4 h, followed by centrifug. on at 5900 RCF and 4 °C for 10 min using an Ep podorf 5415R centrifuge to separate serum. All of this serve, as immediately stored at - 80 °C, and surguenty used for blood biochemical analysis with 3 days Hematocrit (Ht) was measured using the micre matocrit method, whereas hemoglobin (Hb) cose (CZU), glutamate oxaloacetate transaminase (GOT, spartate aminotransferase (AST), glutamate pyruvate transaminase (GPT)/alanine aminotransferast (ALP), alkaline phosphatase (ALP), and total cholorol (VO) were analyzed using a FUJI DRI-C EM 4500 automatic dry-type chemistry analyzer (FU. PHOTO FILM Co., Japan). The data obtained from these hematological and biochemical analyses were analyzed for significant differences (p < 0.05) between mean values with t test using SigmaPlot 8.0. Tissues, including gill, liver, and kidney, were collected from one dissected fish and were used for histopathological assays. The hematological and biochemical assays were replicated twice.

Histopathology and microscopy

Autopsy was performed as soon as blood had been collected for blood analysis, in which samples $(10 \times 5 \times 3 \text{ mm in size})$ of tissues such as liver, kidney, and gill were extracted and fixed in a buffered neutral formalin fixative (Sigma) for 24 h. The fixed organ samples were thin-sectioned (approx. $5 \times 5 \times$ 1.5 mm) and fixed again in the same fixative (12 h), followed by washing with water, dehydration, clearing, ard paraffin infiltration. The organ samples were then embedde para fin to prepare paraffin blocks, which were then subject to thin sectioning at a thickness of $4-5 \mu m$, ing a microtome (Leica) and subsequently placed on since glass and dried. The prepared tissue sections were then stained with Herris's hematoxylin and eosin (H&F) (K rnan 2008; Llewellyn 2009) to observe morphologic. shanges in the tissues. The tissue sample slides wer observe, sing a light microscope (ZEISS), during whic' tis. rimages were captured using an

Production of tenu. remediated MBZ using full-overlapped g. vitational field energy

A certain point between the center of the earth and the center of rtain outer planet is where the gravities of each interact, when their energies are exchanged, and also where numerous ther gravities are working. Therefore, matter composed of el nents at this point could receive FOGF energy, named Dong-ta-ra-con-ching," and in turn more energy will be received by rotation and revolution of the earth. In order to induce this energy into matter, we developed the material remediation installation "Putor" (Fig. 2), which could force synchronization in MBZ, make MBZ normally receive FOGF energy, and reduce toxicity of MBZ. It consisted of the "Eup-cha" and the "Nap-cha" putor program. The Eup-cha putor program induces energy from the center of the earth, whereas the Nap-cha putor program amplifies numerous weak extraterrestrial energies using natural matter, silkworm. To treat MBZ, the Eup-cha putor program was installed under MBZ and the Nap-cha putor program was installed over MBZ.

The principle of this Putor installation is briefly explained. As mentioned in the introduction, elements on the earth receive FOGF energy, and thus living organisms comprised of these elements are also expected to receive FOGF energy. We investigated the capacities of FOGF energy reception in various living organisms, and finally we chose the silkworm because it seemed to receive energy almost all day. We raised them, studied their properties every spring and autumn for 15 years, and could obtain the suitable silkworm, named "Ho-ho-nong", for our purpose. Silkworm excrement was the most appropriate because it was not denatured easily, unlike other parts such as heads, skins, and silk glands that are composed of protein. However, silkworm excrement alone

was not enough to remediate the destroyed ten. ts, and therefore we placed the excrement at the top and the cutom of several trees and induced amplification, using the energy reception ability of the trees. The Nap-contained the Eup-cha putor programs of the material remediation mstallation Putor were produced using this procedure.

Chemistry of MBZ ar MP MBZ

Fig. 2 Dimensions of the material

remediation installation "Putor"

¹H NMR and ¹³C MR spectra were recorded on Varian Unity INOVA 400 Netro in DMSO- d_6 from Sigma-Aldrich (USA). Chemical shifts were expressed in parts per million relative to MSO- l_6 (¹H, 2.5 ppm; ¹³C, 39.5 ppm). High-resolution material electrospray ionization (HRMS-ESI) at lyse owere carried out by using an Agilent technologies 622. Curate-Mass TOF LC/MS spectrometer.

Methyl (6-benzoyl-1*H*-benzo[*d*]imidazol-2-yl) carbamate (Mebendazole)

¹H NMR (400 MHz, DMSO-*d*₆): δ 12.09 (brs, 1H), 11.67 (brs, 1H), 7.85 (s, 1H), 7.73–7.70 (m, 2H), 7.65 (m, 1H), 7.58–7.50 (m, 4H), 3.77 (s, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆/TFA): δ 195.0, 152.9, 146.2, 137.5, 133.2, 133.1, 132.7, 129.7, 129.6, 128.7, 126.5, 115.5, 113.4, 53.9.

HRMS (ESI) m/z calculated for $C_{16}H_{14}N_3O_3^+$ [M + H]⁺ 296.1030, found 296.1032.

Methyl (6-benzoyl-1*H*-benzo[*d*]imidazol-2-yl) carbamate (MR Mebendazole)

¹H NMR (400 MHz, DMSO-*d*₆): δ 11.85 (brs, 2H), 7.85 (s, 1H), 7.72–7.70 (m, 2H), 7.65 (m, 1H), 7.58–7.53 (m, 4H), 3.77 (s, 3H).

¹³C NMR (100 MHz, DMSO-*d₆*/TFA): δ 195.0, 152.9, 146.2, 137.6, 133.4, 133.0, 132.8, 129.8, 129.6, 128.7, 126.6, 115.6, 113, 5, 54.0.

HRMS (ESI) m/z calculated for $C_{16}H_{14}N_3O_3^+$ [M+H]⁺ 296.1030, found 296.1032.

Data availability All data generated or analyzed during this study are included in this published article [and its supplementary information files].

 Table 2
 In vitro antiparasitic
 activity of candidate agents against Miamiensis avidus under culture conditions in minimum essential medium (MEM)

Compound	Score of motility and morphology (mg/L) at 24 h													
	10	50	100	200	300	400	500	600	700	800	900	1000		
Abamectin	0	0	0	0	0	1	3	3	3	3	3	3		
Albendazole	0	0	0	0	0	0	0	0	1	1	3	3		
Benzyl benzonate	0	0	0	0	0	0	0	0	1	2	2	2		
Clorsulon	0	0	0	0	0	0	0	0	0	0	1	1		
Deltamethrin	0	0	0	0	0	0	0	0	0	0	0	1		
Febantel	0	0	0	0	0	0	0	0	0	0		0		
Fenbendazole	0	0	0	0	0	0	0	1	1	1	1	3		
Imidacloprid	0	0	0	0	0	0	0	0	0 /		0	1		
Ivermectin	0	0	0	0	0	0	0	0	0	0	0	0		
Levamisole	0	0	0	0	0	0	0	0	0	0	0	0		
Mebendazole	0	0	2	3	3	3	3	3		3	3	3		
Moxidectin	0	0	0	0	0	0	0	l	0	2	3	3		
Oxfendazole	0	0	0	0	0	0	0	1	L	1	1	3		
Oxibendazole	0	0	0	0	0	0	0	0	$\boldsymbol{\lambda}_0$	0	0	0		
Piperazine	0	0	0	0	0	0	0		0	0	0	0		
Pyrantel	0	0	0	0	0	0	0	0	0	0	0	0		
Selamectin	0	0	0	0	0			2	3	3	3	3		
Tetramisole	0	0	0	0	0	0	0	0	0	0	0	0		
Trichlorfon	0	0	0	0			0	1	2	3	3	3		

 Table 3
 In vitro antiparasitic
 activity of candidate agents against Miamiensis avidus under culture conditions in seawater

activity of candidate agents	Compound Score Specific and morphology (mg/L) at 24 h												
against <i>Miamiensis avidus</i> under culture conditions in seawater		10	50	100	200	300	400	500	600	700	800	900	1000
	Abamectin	0	ð	0	0	0	0	0	0	0	2	3	3
	Albendaz le	0	0	0	0	0	0	0	0	1	1	3	3
	Benzyl be onate	0	0	0	0	0	0	1	1	3	3	3	3
	C ^{rsulon}	0	0	0	0	0	0	0	0	0	0	0	0
	De tan .	0	0	0	0	0	0	0	0	0	0	0	0
	Febantel	0	0	0	0	0	0	0	0	0	0	0	0
	Fenbendazole	0	0	0	0	0	0	0	1	1	1	1	3
	Imidacloprid	0	0	0	0	0	0	0	0	0	0	0	0
	Ivermectin	0	0	0	0	0	0	0	0	0	0	0	0
	Levamisole	0	0	0	0	0	0	0	0	0	0	0	0
	Mebendazole	0	0	2	3	3	3	3	3	3	3	3	3
	Moxidectin	0	0	0	0	0	0	0	0	0	0	0	2
	Oxfendazole	0	0	0	0	0	0	0	1	1	1	1	3
	Oxibendazole	0	0	0	0	0	0	0	0	0	0	0	0
	Piperazine	0	0	0	0	0	0	0	0	0	0	0	0
	Pyrantel	0	0	0	0	0	0	0	0	0	0	0	0
	Selamectin	0	0	0	0	0	0	1	2	3	3	3	3
	Tetramisole	0	0	0	0	0	0	0	0	0	0	0	0
	Trichlorfon	0	0	0	0	0	0	0	1	2	3	3	3

 Table 4
 In vitro antiparasitic activity of material remediated mebendazole (MR MBZ) and mebendazole (MBZ) against *Miamiensis avidus* under culture conditions in minimum essential medium (MEM) and seawater

Compound	Score	Score of motility and morphology (mg/L) at 24 h in MEM													
MR MBZ	10	50	100	200	300	400	500	600	700	800	900	1000			
	0	2	3	3	3	3	3	3	3	3	3	3			
MBZ	10	50	100	200	300	400	500	600	700	800	900	1000			
	0	0	2	3	3	3	3	3	3	3	3	3			
Compound	Score	of motility	and morph	ology (mg/l	L) at 24 h ii	n seawater n	nedium								
MR MBZ	10	50	100	200	300	400	500	600	700	800	900	1000			
	0	2	3	3	3	3	3	3	3	3	3				
MBZ	10	50	100	200	300	400	500	600	700	800	900	.000			
	0	0	2	3	3	3	3	3	3	3	3	3			

Results

Effect of in vitro antiparasitic activity

The antiparasitic activities of the 19 candidate antiparasitic drugs on ciliates in MEM and seawater are presented in Tables 2 and 3, respectively. In terms of efficacy, albendazole, febantel, fenbendazole, MBZ, oxfendazole, oxibendazole, ivermectin, selamectin, levamisole, tetramisole, piperazine, pyrantel, and trichlorfon showed similar activities. In contrast, abamectin, clorsulon, deltamethrin, imidacloprid, and moxidectin showed better xtivities in MEM than in seawater, whereas b nzy benzonate had a higher efficacy in seawater in MEM and seawater, MBZ began to display a vity from 100 mg/L (score 2), and had the highest effect a. 90 mg/ L (score 3). Abamectin showed the second highest affect at 500 mg/L (score 3) in MEM, although its efficacy was low in seawater at 900 mg/L (score Selamectin and trichlorfon were most effective at 700 and 800 mg/L (score 3), respectively, in both 1, 1, 1 and seawater. Moxidectin had highest areas it 900 mg/L (score 3) in MEM, whereas it we low effects in seawater at 1000 mg/L (score 2). The remaining antiparasitic drugs showed low effect (score 1) or no effect (score 0), even at 1000 mg/L. Amo. 19 candidate antiparasitics, MBZ showed the highest enacy in an in vitro efficacy test against th vathogenic M. avidus isolated from olive flov....s.

The evitro antiparasitic activities of MR MBZ and MBZ are volume in Table 4. In MEM, MR MBZ had a moderate effect volce 2) at 50 mg/L and a high effect (score 3) at 100 mg/L, whereas MBZ showed a moderate effect (score 2) at 100 mg/L and a high effect (score 3) at 200 mg/L. In sterile seawater, MR MBZ and MBZ displayed a high effect (score 3) and a moderate effect (score 2) at 100 mg/L, respectively. Thus, MR MBZ was found to have a better antiparasitic activity in both MEM and seawater.

Treatment effect of MR Mb. and

For the oral treatment M. MBZ resulted in 55.0% RPS at 200 mg/kg B.W. ar 137.8% K 37 at 100 mg/kg B.W. (Fig. 3a), whereas MBZ should a 13.5% RPS at 200 mg/kg B.W. and 21.7% RPS at 10 mg/kg B.W. (Fig. 3b). Although both MR MBZ and MBZ should the highest antiparasitic activity at 200 mg/kg B.W. of the highest antiparasitic activity at 200 mg/kg B.W. Tor the bath treatment, MR MBZ resulted in 51.1% RPS 100 mg/L, and 42.8% RPS at 100 mg/L (Fig. 4a), whereas MBL resulted in 44.4% RPS at 200 mg/L and 37.8% RPS at 90 r.g/L (Fig. 4b). As in the oral administration, both MR M.Z and MBZ were the most effective at 200 mg/L. However, both resulted in slight increases in RPS at 100 mg/L, which is in contrast to that observed in the oral administration. MR MBZ was, nevertheless, more effective than MBZ in both oral and bath administrations.

Effect of MR MBZ and MBZ on hematological and biochemical parameters

The blood analysis results for MR MBZ and MBZ treatments are presented in Table 5. The MR MBZ group was subjected to single-dose oral treatment at 100 and 500 mg/kg B.W., respectively, and bath treatment at 100 and 500 mg/L for 1 h at each concentration, which were then compared with the respective control groups. For all hematological (Hb and Ht) and biochemical (GOT, GPT, GLU, ALP, and TCHO) parameters analyzed, there were no significant increases (p < 0.05). In contrast, in both oral and bath treatments, the MBZ group showed significant increases in hematological and biochemical parameters (p < 0.05) in a time series compared with the control group. When orally administered at 100 mg/kg B.W., there were no distinct changes in hematological parameters (Hb and Ht) until the 14th day compared with the control group, whereas there were changes in biochemical parameters. In detail, ALP increased after 6 h, whereas GOT, GPT, GLU, and TCHO showed significant increases a later time **Fig. 3** Oral treatment. Juvenile olive flounders (*Paralychthys olivaceus*) were artificially infected with *Miamiensis avidus* through intraperitoneal injection, and then pharmaceutical feeds containing material-remediated mebendazole (**a**) and mebendazole (**b**), each at concentrations of 20, 50, 100, and 200 mg/kg body weight (B.W.), were given by single oral administration. Thereafter, cumulative mortality rates were measured for 20 days

points. When administered at 500 mg/kg W., there was no change in Hb until the 14th day, thereas in had increased significantly by the second day. Of the chemical parameters, GOT, ALP, and TCHC creased significantly from 6 h, and all measured para. ters COT, GPT, GLU, ALP, and TCHO) had increased sig. "cantly by the 14th day. In the 100 mg/L bath the ment, there were no distinct changes in hematological parame s (Hb and Ht) until the 14th day compared with the control g.oup, whereas changes in the patterns of biochen. a para neters were similar to those in the group with adm. intration at 100 mg/kg B.W. In contrast, in the ms t bath treatment, Hb, GOT, and ALP increased sig-5 nifice the trom 6 h, whereas Hb, Ht, GOT, GPT, ALP, and TCHO showed substantial increases on the second day. Thereafter, the number of parameters showing significant increases gradually declined. Of the hematological parameters, Hb and Ht increased significantly at high treatment concentrations in both the bath and oral administration groups, whereas these trends were not shown in the biochemical parameters. Among all groups, however, there were no mortalities in olive

flounders throughout the entire experimental period following both oral and bath treatments.

Effect of MR MBZ and MBZ on histopathological changes

Figure 5 shows the tissues of normal liver (a) and kidney (b) in the control group without administration of mebendazole. Representative histopathological characteristics of groups administered with MR MBZ and MBZ are shown for comparison in Figs. 6 and 7, respectively. For the MR MBZ administration group (Fig. 6), there were no abnormal lesions in liver and kidney tissues during the experimental period from the first day (a, b) to the 14th day (c, d) after oral administration with 100 mg/kg B.W. and from the first day (6E, 6F) to the 14th day (6G, 6H) after bath treatment for 1 h with 500 mg/L of MR MBZ, which was similar to the control group (5A, 5B). For the MBZ administration group (Fig. 7), however, slight atrophy was found in hepatocytes and renal tubule epithelial cells, and eosinophilic hyaline droplet degeneration, which is Fig. 4 Bath treatment. Juvenile olive flounders (*Paralychthys olivaceus*) were artificially infected with *Miamiensis avidus* through intraperitoneal injection, and then bath treated in pharmaceutical water tanks containing material-remediated mebendazole (**a**) and mebendazole (**b**), each at concentrations of 20, 50, 100, and 200 mg/L, for 1 h. Thereafter, cumulative mortality rates were measured for 20 days

suspected to indicate protein degradation, s partly observed in the cytoplasm of renal tubule it helial certs from 1 day after oral administration with 100 mg. B.W. of MBZ (a, b), whereas control group times (a, b) were found to be normal. At the same concernation cellular atrophy was clearly observed in hepatocyces an renal tubule epithelial cells until the 14th day, and in, line drop, et degeneration was still clearly visible in the cytopla. of renal tubule epithelial cells (c, d). After bathing with 500 mg/L of MBZ for 1 h, atrophy was clearly ob. red in hepatocytes and renal tubule epithelial cells lay l f). Hepatocytes, in particular, clearly showed phy (a) and hyaline droplet degeneration in renal tubule epit. al cells was also partly observed (f). On day 14 after bathing with 500 mg/L MBZ for 1 h, there was degeneration of hepatocytes and renal tubules similar to that observed at 1 day after bathing in the same concentration (e, f), as well as atrophy of hepatocytes and overall severe degradation in some samples (g). In addition, we observed degeneration of renal tubule epithelial cells, renal tubules, glomeruli, and neighboring interstitial cells comprising hemopoietic tissues (h). In

contrast, no abnormal histopathological degradation was observed the gills of fish in any of the experimental groups. Since there were no significant concentration-dependent differences in histopathological characteristics with time after oral and bath administrations of MBZ, we have not shown the pathological tissues for each administration group. Overall, high MBZ concentrations rather than low concentrations and bath treatment rather than oral administration tended to result in relatively clear degradation.

Discussion

Scuticociliates are well-known opportunistic pathogens that show substantially high pathogenicity toward various marine fish. In Korea, approved bath treatments (e.g., formalin) have been used to control scuticociliatosis because commercially antiparasitic drugs are very limited by law. Especially, formalin efficacy has been gradually reduced in olive flounder farms. Iglesias et al. (2002) reported that 52 candidate **Table 5**Changes in hematological and biochemical parametersobserved in a time series after single-dose oral treatment (mg/kg bodyweight (B.W.)) and bath treatment (mg/L) for 1 h with material

remediated mebendazole (MR MBZ) and mebendazole (MBZ), given to juvenile olive flounder (*Paralychthys olivaceus*)

Time (days)	Experimental groups		Hb (g/dL)	Ht (%)	GOT (U/L)	GPT (U/L)	GLU (mg/dL)	ALP (U/L)	TCHO (mg/dL)
6 h	Control		7.5 ± 1.3	25.2 ± 4.6	25.4 ± 2.1	2.6 ± 0.5	13.8 ± 3.0	161.0 ± 30.6	149.6 ± 28.5
	MR MBZ	100 oral	6.8 ± 1.0	25.5 ± 1.0	25.3 ± 2.5	2.2 ± 1.6	12.3 ± 3.3	152.6 ± 55.8	136.2 ± 21.1
		500 oral	6.2 ± 0.5	27.2 ± 5.1	21.5 ± 5.3	2.6 ± 2.1	18.3 ± 5.7	161.0 ± 77.9	157.5 ± 16.8
		100 bath	7.4 ± 2.5	23.4 ± 4.6	23.0 ± 8.7	2.2 ± 0.4	12.5 ± 2.6	152.2 ± 42.4	133 s ± 28.9
		500 bath	6.2 ± 1.3	22.8 ± 2.3	24.0 ± 7.0	2.0 ± 0.8	15.5 ± 2.2	147.0 ± 23.4	15 + 11.7
	MBZ	100 oral	8.2 ± 0.3	26.0 ± 1.8	29.3 ± 5.3	3.8 ± 1.0	16.8 ± 4.6	$224.5 \pm 21.7*$	148.8 3.2
		500 oral	9.0 ± 0.8	$30.4 \pm 1.5 *$	$41.9\pm5.7*$	4.0 ± 1.4	17.5 ± 4.4	313.0 ± 2 *	240.3 ± 10.2*
		100 bath	8.6 ± 1.4	26.0 ± 2.2	29.8 ± 3.6	3.0 ± 1.4	13.0 ± 2.6	209.5 56.2	203.2 ± 35.6*
		500 bath	$9.0\pm0.6*$	29.3 ± 2.9	$30.5\pm2.6*$	3.5 ± 0.6	17.3 ± 3.6	23' .5 ± 49.4*	o3.3 ± 32.7
1 day	Control		7.6 ± 1.8	27.2 ± 4.9	23.1 ± 5.7	2.6 ± 0.9	14.6 ± 4.3	16 ± 28.8	154.4 ± 26.3
	MR MBZ	100 oral	7.1 ± 0.5	25.0 ± 3.7	25.3 ± 5.5	2.2 ± 1.1	15.6 ± 3.2	156.09	144.4 ± 36.3
		500 oral	8.3 ± 3.3	27.0 ± 1.8	23.3 ± 1.9	2.0 ± 1.2	19.5 ± 5.3	$1 2 \pm 23.0$	144.8 ± 31.7
		100 bath	7.5 ± 0.5	24.7 ± 1.5	22.5 ± 4.2	2.4 ± 1.1	12.4 ± J	159.4 ± 29.9	125.2 ± 26.3
		500 bath	8.0 ± 1.5	24.8 ± 3.7	24.0 ± 2.6	2.2 ± 0.8	12.2 ± 3.1	149.6 ± 27.2	111.2 ± 7.9
	MBZ	100 oral	8.3 ± 1.1	29.2 ± 3.3	$30.6 \pm 3.5^*$	3.6 ± 1.3	22 ± 3.4*	200.0 ± 43.9	156.2 ± 49.4
		500 oral	9.5 ± 1.1	$33.2 \pm 2.4*$	39.3 ± 4.3*	$5.8 \pm 1.5^{*}$	·*	216.7 ± 41.8	$223.4 \pm 50.6*$
		100 bath	8.3 ± 0.6	30.4 ± 4.7	28.8 ± 3.3	3.(+ 0.9	1 ± 3.3	$236.7 \pm 32.3^*$	$246.3 \pm 40.4*$
		500 bath	9.2 ± 1.5	33.8 ± 4.8	39.5 ± 4.0*	5.2 ≌ ∿.	17.0 ± 3.7	239.7 ± 63.2	185.0 ± 24.9
2 days	Control		7.9 ± 1.5	27.0 ± 2.6	22.1 ± 4.8	2.7 ± 1.1	13.0 ± 4.4	154.8 ± 19.0	132.2 ± 28.9
	MR MBZ	100 oral	7.7 ± 0.4	26.2 ± 5.0	25.6 ±	3.7 ±2	10.0 ± 2.8	154.0 ± 44.2	116.6 ± 23.7
		500 oral	8.1 ± 1.2	23.7 ± 0.6	23. 5.1	3.3 ± 1.3	11.8 ± 3.0	157.0 ± 54.7	140.6 ± 26.4
		100 bath	7.2 ± 1.5	24.7 ± 2.3	14.3 ± 1	2.3 ± 1.3	11.5 ± 2.6	134.2 ± 52.8	142.2 ± 35.7
		500 bath	8.1 ± 1.1	25.7 ± 2.5	26.0 ± 3.7	2.7 ± 0.6	17.8 ± 6.5	148.5 ± 66.6	133.2 ± 55.4
	MBZ	100 oral	8.4 ± 1.3	30.3 + 9.6	`5.5 ± <i>5</i> .1*	$11.3 \pm 4.0*$	$20.2 \pm 3.7*$	$198.3 \pm 28.7^*$	$223.3 \pm 50.1*$
		500 oral	9.5 ± 1.1	31 3.1*	$4 J \pm 3.0^{*}$	$28.8 \pm 4.7*$	$28.8 \pm 2.6*$	$218.0 \pm 40.8^{*}$	$193.3 \pm 28.5^*$
		100 bath	8.7 ± 0.5	27.8 ± 7	$30.5 \pm 4.2*$	4.6 ± 1.5	17.6 ± 3.6	176.0 ± 39.0	207.3 ± 77.0
	~ .	500 bath	$10.9 \pm 0.5^{*}$	31.8 ± 2.9	36.3 ± 4.7*	7.5 ± 1.9*	18.0 ± 4.7	199.0 ± 32.8*	212.7 ± 11.6*
7 days	Control		7.4 ± 2	25.0 ± 3.5	24.0 ± 1.8	2.5 ± 0.4	14.2 ± 5.5	154.6 ± 38.2	139.0 ± 36.9
	MR MBZ	100 oral	$7.2 \pm 1.$	27.5 ± 3.2	24.5 ± 2.6	2.5 ± 1.9	19.0 ± 5.2	142.4 ± 41.8	149.3 ± 25.7
		500 oral	+ 2.6	27.2 ± 2.2	25.8 ± 3.6	2.3 ± 1.0	18.0 ± 5.5	141.4 ± 32.4	157.4 ± 32.1
		100 bath	δ1 ± 0.	27.4 ± 2.4	24.0 ± 2.6	2.4 ± 0.5	15.6 ± 4.8	153.2 ± 52.2	156.4 ± 41.1
	107	500 D.	8 ± 1.9	26.8 ± 3.3	23.3 ± 2.5	2.0 ± 1.2	15.8 ± 3.9	130.6 ± 39.5	153.0 ± 34.0
	MBZ	1 0r	$.9 \pm 1.3$	29.4 ± 4.0	$44.3 \pm 4.6^*$	$19.7 \pm 3.2^{*}$	$24.4 \pm 3.6^*$	$1/8.3 \pm 46.6$	$26/.3 \pm 5/.6*$
		500	8.8 ± 1.1	29.4 ± 4.9	$56.8 \pm 3.3^{\circ}$	$22.8 \pm 4.1^{*}$	$26.4 \pm 4.2^{*}$	206.4 ± 39.2	$281.7 \pm 19.9^{*}$
		100 bath	8.5 ± 0.7	27.0 ± 5.3	$38.0 \pm 5.6^*$	$10.3 \pm 2.5^*$	19.2 ± 4.1	209.3 ± 27.2	$233.7 \pm 61.7*$
14.1		19 bath	$9.3 \pm 0.5^{*}$	29.0 ± 3.2	$3/.0 \pm 4.4^{*}$	$1/.5 \pm 2.4^*$	21.0 ± 4.2	$218.5 \pm 2/.1^{*}$	223.7 ± 72.1
14 days	Control	100 1	7.5 ± 1.5	25.2 ± 2.6	23.0 ± 3.9	2.8 ± 0.8	12.8 ± 2.3	157.6 ± 39.5	136.8 ± 17.5
	RMFZ	100 oral	7.9 ± 1.5	26.3 ± 4.9	23.3 ± 3.5	3.0 ± 0.8	11.5 ± 3.7	167.8 ± 20.7	155.6 ± 31.6
		500 oral	7.3 ± 0.8	26.4 ± 3.3	24.3 ± 4.3	2.8 ± 0.5	11.3 ± 1.7	158.8 ± 68.4	145.8 ± 26.2
		100 bath	7.4 ± 0.6	27.8 ± 2.5	25.0 ± 3.0	2.8 ± 1.0	14.8 ± 4.4	157.2 ± 30.4	134.4 ± 57.5
	MD7	500 bath	7.8 ± 1.4	28.3 ± 2.9	25.2 ± 3.6	3.2 ± 0.8	11.5 ± 4.5	140.2 ± 39.3	118.4 ± 32.6
/	MBZ	100 oral	9.2 ± 1.5	29.2 ± 3.4	$30.5 \pm 2.6^{*}$	$11.5 \pm 1.3^*$	$21.8 \pm 5.6^{*}$	$1/5.6 \pm 28.6$	$216.7 \pm 45.3^{*}$
		500 oral	9.1 ± 1.3	29.0 ± 3.4	34.7 ± 4.9*	$15.7 \pm 1.5^{*}$	$32.3 \pm 4.2^{*}$	$222.3 \pm 29.2^{*}$	$265.3 \pm 12.7^{*}$
		100 bath	8.9 ± 1.3	29.7 ± 0.6	$30.0 \pm 2.0^{*}$	7.8 ± 1.7*	16.5 ± 3.9	$18'/.4 \pm 28.0$	296.7 ± 21.2*
		500 bath	9.1 ± 1.3	29.2 ± 2.8	34.0 ± 4.6	$12.2 \pm 3.6^*$	17.2 ± 4.0	196.2 ± 48.2	$271.0 \pm 12.8^{*}$

p < 0.05 (t test)

а

Fig. 6 Representative

histopathological photographs of liver and kidney tissues collected from olive flounder (Paralychthys olivaceus) administered material remediated mebendazole (MR MBZ) (H&E stain, scale bar = 50 µm). Liver (a) and kidney (b) 1 day after oral administration at 100 mg/kg body weight (B.W.) Liver (c) and kidney (d) 14 days after oral administration at 100 mg/kg B.W. Liver (e) and kidney (f) 1 day after bath administration at 500 mg/L for 1 h. Liver (g) and kidney (h) 14 days after bath administration at 500 mg/L for 1 h. None of the groups (**a**–**h**) showed abnormal degradation in comparison with the liver (a) and kidney (b) of the control group. Hepatopancreatic tissue (HP), interstitial tissue (IT), renal tubule (RT), Glomerulus (G), vein (V)

Fig. 7 Representative histopathological photographs of alterations in liver and kidney tissues of olive flounder (Paralychthys olivaceus) administered mebendazole (H&E stain, scale bar = 50 μ m). Liver (a) and kidney (b) 1 day after oral administration at 100 mg/kg body weight (B.W.): light atrophy was found in hepatocytes and renal tubule epithelial cells, and eosinophilic hyaline droplet degeneration was partly observed in the cytoplasm of renal tubule epithelial cells. Liver (c) and kidney (d) 14 days after oral administration at 100 mg/kg B.W.: characteristics shown in (a) and (b) are still clearly observed. Liver (e) and kidney (f) 1 day after bath administration at 500 mg/L for 1 h: characteristics similar to those in oral administrations (c, d) are observed. Liver (g) and kidney (h) 14 days after bath administration at 500 mg/L for 1 h: there was atrophy of hepatocytes and overall severe degradation in some samples. There was severe degeneration of renal tubule epithelial cells, and degeneration of renal tubules, glomerulus, and neighboring interstitial cells. Hepatopancreatic tissue (HP), interstitial tissue (IT), renal tubule (RT), Glomerulus (G), vein (V), piknosis of hepatocyte (black arrows), eosinopilic droplet (white arrows)

antiprotozoals in vitre activity against ciliate P. dicentrarchi were iso. d from farmed turbot. They estimated susceptibility against cillates of these antiprotozoals using filr (salir ity 28%); and albendazole, febantel, ivertered seaw. meet. MB2. a trichlorfon did not show antiparasitic acv. NPZ showed good antiparasitic activity in vitro when filtered seawater (salinity 20%) against ciliates, alused though ne others (albendazole, febantel, ivermectin, trichlorfon) were null or very low. Four antiprotozoals showed similar susceptibility effects, but the sensitivity of MBZ did not concur with our results. However, previous researchers did not investigate treatment effect of selected antiprotozoals as an antiparasitic drug in fish infected with ciliates. Therefore, the candidate 19 antiparasitic drugs have been chosen for

scuticociliatosis treatment in this study. One of them, MBZ, demonstrated the most effective antiparasitic activity in vitro (Table 2).

The oral method, in which an antiparasitic is administered with feed to cultured fish, does not cause various stresses to mass-cultured fish, and is accordingly the preferred treatment for farmed fish (Kang et al. 2013; Chagas et al. 2016). With respect to oral administration, in farmed fish that are infected by parasites, the degree of infection severity varies, such that some individuals are inferior to other fish in terms of prey competition, which makes it difficult for them to take medicated feeds. Since anorexia occurs at the aggravative stage of scuticociliatosis (Iglesias et al. 2002; Kang et al. 2013), it is not possible to apply the same force-feeding method used for livestock, which makes it difficult to administer effective antiparasitic treatment. Thus, we performed experiments taking into consideration the fact that a combination of both oral and bath methods would be the most effective antiparasitic method. Accordingly, although oral administration is the best method for treating scuticociliate infection, the likelihood of systemic infection caused by a failure to perform treatment at the optimal time should not be overlooked.

In both human and veterinary medicines, it has been reported that short-term therapy and high-dose administration with MBZ can be accompanied by various side effects (Rosenthal 2009). ALT/GPT or ALP values by MBZ treatment, which are indicators of liver injury, have been found to increase (Seitz et al. 1983; Junge and Mohr 1983; Bekhti et al. 1986; Davis et al. 1986; Bekhti and Pirotte 1987). In addition, it has been shown to result in higher levels of GOT, GPT, ALP, indicating abnormal liver function (Shikiya et al. 1990, 1991a, 1991, 1991c, 1992).

Oral administration of MBZ at a single dosage of 50– 200 mg/kg B.W. significantly reduced the infestation level of microcotylid monogeneans (*Microcotyle sebastes*) in black rockfish (Kim and Choi 1998; Kim et al. 1998). We attempted to demonstrate that MBZ would be effective for the treatment of *M. avidus* by applying it orally in olive flounder. MBZtherapeutic diets administered orally at a single dose of 100– 200 mg/kg B.W. improved survival rates effectively, Moreover, bath treatment of MBZ at a dose of 100–200 p g/ L h.⁻¹ was similar that of oral efficacy. These results night constitute useful data to determine the concentration of L treatment in olive flounder as a control for ciliate

Few hematological and biochemical studies have ben observed in fish after MBZ administration. Treatment of MBZ against natural infections with the monogenean helminth (Anacanthorus penilabiatus) have been vestigated on cultured pacu (Piaractus mesopotan), and long-term baths over 24 h at 1, 10, and 100 mg/1 read in a significant increase in Hb and Ht (Mars et al. 2001). However, oral administration of a feed upp mented with 0.5-2.0 g MBZ/ kg dry ration for treatmen of tambaqui (C. macropomum) naturally infected th monogeneans did not affect Hb and GLU (Chagas et al. 5). We dealt with toxicity effects of only MB7 administration on olive flounder through blood analysis. I for the studies cited above is directly comparable to e pred t study in terms of parasites or fish species. Potent there are no available data in the open literature regating toxicity effects of MBZ on fish through blood analysis. Fun blood is a pathophysiological indicator of whole body function; and therefore, blood parameters are important in diagnosing the functional status of fish exposed to toxicants (Zutshi et al. 2010). Also, biochemical changes, resulting in altered physiology, are known to more quickly respond to toxicants than any apparent morphological changes. When tissue damage occurs, the intracellular enzymes are leaked into the blood, depending upon the extent of tissue damage (Javed and Usmani 2017). Hence, although MBZ is not a toxic chemical, the blood analysis of toxic chemicals may be used to estimate the side effects of MBZ.

In fishes, changes in the activities of GOT/AST, GPT/ ALT, and ALP enzymes, as well as changes in cholesterol lipid composition, are used as important indicators to assess liver damage caused by toxic chemicals (Jyothi and Narayan 1997; Sharma 1999; Jung et al. 2003; Virat et al. 2011; Firat and Alici 2012; Hoseini et al. 2016, Viasma GOT and GPT activities have frequently been u ¹ to detect early signs of damage to the atocytes (Min and Kang 2008). In the present study, import indicators for diagnosis of liver damage, inc uding GO1, GPT, ALP, and TCHO, increased significanties (p < 0.05) in the MBZ administration group, which pears to support the fact that MBZ is toxic to the liver of live flounder. In addi-tion, the value of GUU, well-known stress indicator in fishes, also increased sig. Cantly concomitant with stressful condi ons Kim et al. 2000; Cnaani et al. 2004; Biawas et al. 20, Conc et al. 2015). In the present study, the same rearing en Yonment was used for all experimental groups in ling the control groups, and in all groups, the fish were not fed for 14 days after MBZ inistration. During the experimental period, there were no significant changes in the GLU levels of the ntr I and MR MBZ administration groups, whereas G. U levels increased significantly in the MBZ administration group. Unfortunately, we were unable to determine the root cause of this increase in the present study. However, Kim et al. (2014) reported that olive flounders that were starved for 42 days and those that were supplied with feed showed no significant differences in hematological and biochemical parameters, including Hb, Ht, GOT, GPT, GLU, and TCHO. In addition, sea bass that were starved for over a month showed no difference in plasma GLU levels compared with a fed control group (Chatzifotis et al. 2011). Hence, the significant increase in GLU levels observed in the present study was probably not attributable to the lack of food intake for 14 days after treatment. Therefore, we speculate that the administered MBZ causes stress in olive flounders through metabolic processes such as absorption and distribution. Moreover, hematological parameters of Hb and Ht have been applied in many studies as useful indicators to assess physiological stresses caused by toxic chemicals in fishes (Jung et al. 2003; Carvalho and Fernandes 2006; Sepici-Dincel et al. 2009). In the present study, the Hb and Ht values for olive flounders that received oral and bath treatments with MBZ increased significantly (p < p)0.05) as time passed, and we accordingly postulate that MBZ causes physiological stress to olive flounders, leading to the inhibition of oxygen transport in the blood.

Mullet (*Mugil liza*) juveniles (0.15 $g \pm 0.07$ g, salinity 4‰) were bath treated with MBZ using 100 to 5 g/L for 24 h (Führ et al. 2012). No mortality was observed at any concentration, and this concurs with our findings. In their study, serious damage of gill tissue was observed in the fishes exposed to amounts equal to or greater than MBZ 10 mg/L. However, the histopathological evaluation showed no effects on the liver and kidney. They concluded that the therapeutic bath concentration of MBZ may cause gill damage at concentrations of 10 mg/L and greater. In the present study, no specific histopathological degeneration was observed in gill tissues, while atrophy of the hepatocyte and renal tubular epithelium, and eosinophilic hyaline droplet degeneration were found. Interestingly, histopathological characteristics showed remarkable differences. Overall, there are limited studies concerning the effect of MBZ administration on tissue histopathology of fish. Nevertheless, we would predict that species of fish, aquatic parameters of the various habitat conditions, like temperature, pH, conductivity, alkalinity, and salinity, may have affected the histological results (Martins et al. 2001). Both the liver and kidney would be sensitive to damage by MBZ administration, which is partially demonstrated by the histopathological changes in the present study.

As mentioned previously, hematological and biochemical parameters increased significantly in the MBZ administration group, indicating that MBZ causes physiological stresses and hepatotoxicity in olive flounders, whereas no compressle changes were observed in the MR MBZ administration group, and there was no significant increase (p > 0.05) when compared with the control group. Consistently, in the logical analyses of liver, kidney, and gill tissues of the MBZ administration group, although we observed no abnormal histopathological degradation in gill tissues, we condetect atrophy in hepatocytes and renal tubule epithelial version in the cytoplasm of renal tubule epithelial version in as hyaline droplet degeneration. In contrast, the NR MBZ administration group showed no abnormal previous.

Herein, we have stroduced a new approach to reduce drug toxicity that differs in skedly from the existing approaches. This method enhances materials using FOGF energy, which modifies is slecale, through remediation of each element within partice problecule. In this way, the toxicity in matter could be reduced. It is expected that this method can address many resues relating to drug toxicity that currently prohibit the development of molecular drugs.

In this study, we produced MR MBZ from pure MBZ (Sigma-Aldrich, M2523-25G; >98%) using FOGF energy technology. The derived MR MBZ was used to treat olive flounders infected with scuticociliates, either by single oral dose or 1-h bath administration, followed by monitoring of the subsequent efficacy and toxicity. However, under actual

farm conditions, it is necessary to repeat oral administrations of MBZ for at least several days in order to prevent reinfection after treatment for scuticociliatosis. Thus, this technology has been applied to commercially available nematocide products for pigs and chickens in South Korea in order to improve the material. Similarly, in the present study, the remediated material was orally administered to olive flounders for five consecutive days. Currently, additional studies are being conducted on hematological, biochemical, and histopathological safety during repeated administrations.

In conclusion, we demonstrated that MR MBZ, pl ced using FOGF energy, retained the same and rasitic effects as the parent MBZ against scuticociliates in cone founders. Furthermore, it had no harmful eff cts on the hematological and physiological characteristics colive flounders, and caused no abnormal toxic lesio. in the over and kidney histopathologically. The present study the first study to demonstrate that the toxic y & ABZ could be reduced by remediation of component elemen. sing the FOGF energy that is present in natur Res ardless of the fact that this new approach was initially examine marine environment, it has considerable potential 1. Suture application to reduce side effects that can occur medical products applied in both veterinary and human nedicines, and also the side effects that can occur ing development of numerous new drugs, consequently resulting in the suspension of development.

Accovered gements This study was conducted with the support of the National Institute of Fisheries Science (R2018064).

Compliance with ethical standards

Ethical approval All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- Athanassopoulou F, Speare D, Cawthorn RJ, MacMillan R, Despres B (2004) Pathology of Anophryoides haemophila (Scuticociliatida: Orchitophryidae), parasite of American lobster Homarus americanus kept under experimental conditions. Aquaculture 236: 103–117
- Azad IS, Al-Marzouk A, James CM, Almatar S, Al-Gharabally H (2007) Scuticociliatosis-associated mortalities and histopathology of natural infection in cultured silver pomfret (*Pampus argenteus* Euphrasen) in Kuwait. Aquaculture 262:202–210

- Barrowman M, Marriner S, Bogan J (1984) The binding and subsequent inhibition of tubulin polymerization in *Ascaris suum* (in vitro) by benzimidazole anthelmintics. Biochem Pharmacol 33:3037–3040
- Bekhti A, Pirotte J (1987) Hepatotoxicity of mebendazole, relationship with serum concentrations of the drug. Gastroenterol Clin Biol 11: 701–703
- Bekhti A, Pirotte J, Woestenborghs R (1986) A correlation between serum mebendazole concentrations and the aminopyrine breath test. Implications in the treatment of hydatid disease. Br J Vlin Pharmacol 21:223–226
- Biawas AK, Seoka M, Takii K, Maita M, Kumai J (2006) Stress response of red bream *Pagus major* to acute handling and chronic photoperiod manipulation. Aquaculture 252:566–572
- Buchmann K, Slotved HC, Dana D (1993) Epidemiology of gill parasite infections in *Cyprinus carpio* in Indonesia and possible control methods. Aquaculture 118:9–21
- Budino B, Pata MP, Leiro J, Lamas J (2012) Differences in the in vitro susceptibility to resveratrol and other chemical compounds among several *Philasterides dicentrarchi* isolates from turbot. Parasitol Res 110:1573–1578
- Carvalho CS, Fernandes MN (2006) Effect of temperature on copper and hematological responses in the neotropical fish *Prochilodus scrofa* at low and high pH. Aquaculture 251:109–117
- Cawthorn RJ (1997) Overview of "bumper car" disease-impact on the north American lobster fishery. Int J Parasitol 27:167–172
- Chagas EC, Araujo LD, Martins ML, Gomes LG, Malta JCO, Varella AB, Jeronimo GT (2016) Mebendazole dietary supplementation controls Monogenoidea (Platyhelminthes: Dactylogyridae) and does not alter the physiology of the freshwater fish *Colossoma macropomum* (Cuvier, 1818). Aquaculture 464:185–189
- Chatzifotis S, Papadaki M, Despoti S, Roufidou C, Antonopoulou E (2011) Effect of starvation and re-feeding on reproductive indices, body weight, plasma metabolites and oxidative enzymes of sea bass (*Docentrarchus labeax*). Aquaculture 316:53–59
- Cheung PJ, Nigrelli RF, Ruggieri GD (1980) Studies on the prorph, of *Uronema marinum* Dujardin (Ciliatea: Uronemati ae) with scription of the histophathology of the infection in m. e fishes. J Fish Dis 3:295–303
- Cho HC, Kim JE, Kim HB, Baek HJ (2015) Effect of water temperature change on the hematological responses and lasma cortisol levels in growing of red spotted grouper, *Epinepher akaara*, Dev Reprod 19:19–24
- Choi S, Sim C, Kim HC, Choi HJ, Park (2014) Natural infection of *Crenosoma vulpis* (Nematoda: Creosomatic, e) in an urban Korean dog. Korean J Vet Res 54, 129
- Cnaani A, Tinman S, Avid V, Ro M, Halata G (2004) Comparative study of biocherical statemeters in response to stress in *Oreochromis a reus, O. n. sambicus* and two strains of *O. niloticus.* Aquac 1, 35:1434-1440
- Davis A, Pawl wski ZS, Son H (1986) Multicentre clinical trials of Benzin idazolecarbamates in human echinococcosis. Bull World Health, pp. 138–388
- Firat Č Alici (2012) Assessment of pollution in ataturk dam lake (Ac raman, urky) using several biochemical parameters in comne *Cyprinus carpio* L. Bull Environ Contam Toxicol 89: 478
- Firat Ö, yogun HY, Yüzereroğlu TA, Gök G, Firat Ö, Kargin F, Kötemen Y (2011) A comparative study on the effects of a pesticide (cypermethrin) and two metals (copper, lead) to serum biochemistry of nile tilapis, *Oreochromis niloticus*. Fish Physiol Biochem 37: 657–666
- Führ F, Pereira J Jr, Romano LA, Almeida F (2012) Gill injury after treatment with mebendazole on mullets *Mugil liza*. Bull Eur Assoc Fish Pathol 32:151–158

- Goven BA, Amend DF (1982) Mebendazole/trichlorfon combination: a new anthelmintic for removing monogenetic trematodes from fish. J Fish Biol 20:373–378
- Harikrishnan R, Jin CN, Kim MC, Kim JS, Balasundaram C, Heo MS (2010) Histopathology and mortality in olive flounder infected by scuticociliatosis caused by *Philasterides dicentrarchi*. Isr J Aquacult Bamidgeh 62:202–211
- Harikrishnan R, Jin CN, Kim JS, Balasundaram C, Heo MS (2012) *Philasterides dicentrarchi*, a histophagous ciliate causing scuticociliatosis in olive flounder, *Philasterides dicentrarchi* histopathology investigation. Exp Parasitol 130:239–245
- Hoseini SM, Hedayati A, Mirghaed AT, Ghelichpour M. 116 Toxic effects of copper sulfate and copper nanoparticles on m. 218, enzymes, thyroid hormones and protein fractions of plasma and astopathology in common carp *Cyprinus carpio*. 1 Toxicol Pathol 68: 493–503
- Iglesias R, Paramá A, Álvarez MF, Le o J, Sanma, a ML (2002) Antiprotozoals effective *in vitro* aga t the scut cociliate fish pathogen *Philasterides dicentrarch* Dis. at Orc, 49:191–197
- Ito S, Kasai H (2015) Identification and valuation of the pathogenicity of a scuticociliate isolated from disc of barfin flounder *Verasper moseri* and sensitivity of a thogen is late to vinegar and tea extract solutions in seawater. Aqua Sci 63:255–259 (in Japanese)
- Javed M, Usmani N, 7) An over new of the adverse effects of heavy metal contagnation on fish health. Proc Natl Acad Sci India Sect B Biol Sci. https://www.sci.org/1007/s40011-017-0875-7
- Biol Sci. https://ororg.0.1007/s40011-017-0875-7 Jee BY, Kim YC, Pan, 15 (2001) Morphology and biology of parasite response to for souticociliatosis of cultured olive flounder *Paralicythyse aceus*. Dis Aquat Org 47:49–55
- Jee BY, Jo M, Kim JW, Park MS (2002) *In vitro* efficacy of formalin, hydrogen peroxide and copper sulfate on the Scuticociliate *onema marinum* at low salinity. J Fish Pathol 15:111–115
- Jee B., Shin KW, Lee DW, Kim YJ, Lee MK (2014) Monitoring of the nortalities and medications in the inland farms of olive flounder, *Paralichthys olivaceus*, in South Korea. J Fish Pathol 27:77–83 (in Korean)
- Jin CN, Lee CH, Oh SP, Jung YU, Song CB, Lee J, Heo MS (2003) Scuticociliatosis in flounder farms of Jeju Island. J Fish Pathol 16: 135–138 (in Korean)
- Jin CN, Kang HS, Moon YG, Lee CH, Lee YD, Lee J, Song CB, Heo MS (2007) Scuticociliatosis in flounder farms of Jeju Island. J Fish Pathol 20:93–97 (in Korean)
- Jin CN, Harikrishnan R, Moon YG, Kim MC, Kim JS, Balasundaram C, Azad IS, Heo MS (2009) Histopathological changes of Korea cultured olive flounder, *Paralichthys olivaceus* due to scuticociliatosis caused by histophagous scuticocilite, *Philasterides dicentrachi*. Vet Parasitol 161:292–301
- Jin CN, Harikrishnan R, Moon YG, Kim MC, Kim JS, Balasundaram C, Heo MS (2010) Effectiveness of cehmotherapeutants against scuticociliate *Philasterides dicentrachi*, a parasite of olive flounder. Vet Parasitol 168:19–24
- Jung SH, Sim DS, Park MS, Jo QT, Kim Y (2003) Effects of formalin on haematological and blood chemistry in olive flounder, *Paralichthys* olivaceus (Temminck et Schlegel). Aquac Res 24:1269–1275
- Jung SJ, Kitamura SI, Song JY, Oh MJ (2007) *Miamiensis avidus* (Cilophora: Scuticociliatida) causes systemic infection of olive flounder *Paralichthys olivaceus* and is a senior synonym of *Philasterides dicentrarchi*. Dis Aquat Org 73:227–234
- Junge VU, Mohr W (1983) Mebendazole-hepatitis. Z Gastroenterol 21: 736–738 (in German)
- Jyothi B, Narayan G (1997) Effect of phorate on certain profiles of serum in freshwater fish, *Clarias batrachus* (Linn.). J Environ Biol 18: 137–140
- Kang YJ, Kim DS, Kim KH (2013) Evaluation of treatment efficacy of doxycycline and albendazole against scuticociliatosis in olive flounder (*Paralichthys olivaceus*). Aquaculture 416417:192–195

- Kang BJ, Jang YH, Jhon BK, Park BH, Jin CN (2015) Monitoring of scuticociliatosis of olive flounder (*Paralichthys olivaceus*) farm in Jeju, Korea from 2007 to 2014. J Fish Pathol 28:165–169 (in Korean)
- Katharios P, Papandroulakis N, Divanach P (2006) Treatment of *Microcotyle* sp. (Monogenea) on the gills of cage-cultured red porgy, *Pagrus pagurus* following baths with formalin and mebendazole. Aquaculture 251:167–171
- Kiernan JA (2008) Histological and histochemical methods: theory and practice, 4th edn. Scion, Bloxham
- Kim KH, Choi ES (1998) Treatment of *Microcotyle sebastes* (Monogenea) on the gills of cultured rockfish (*Sebastes schlegeli*) with oral administration of mebendazole and bithionol. Aquaculture 167:115–121
- Kim KH, Park SI, Jee BY (1998) Efficacy of oral administration of praziquantel and mebendazole against *Microcotyle sebastes* (Monogenea) infestation of cultured rockfish (*Sebastes schlegeli*). Fish Pathol 33:467–471
- Kim KH, Hwang YJ, Cho JB, Ahn KJ, Kwon SR (2000) Effects of consecutive blood collecting stressors on the plasma glucose level and chemiluminescent response of peripheral blood phagocytes in cultured sea bass, *Lateolabrax japonicus*. J Fish Pathol 13:31–36
- Kim SM, Cho JB, Kim SK, Nam YK, Kim KH (2004) Occurence of Scuticociliatosis in olive flounder *Paralichthys olivaceus* by *Philasterides dicentrarchi* (Ciliophora: Scuticociliadida). Dis Aquat Org 62:233–238
- Kim JW, Lee HN, Jee BY, Woo SH, Kim YJ, Lee MK (2012) Monitoring of the moetalities in the aquaculture farms of South Korea. J Fish Pathol 25:271–277 (in Korean)
- Kim JH, Jeong MH, Jun JC, Kim TI (2014) Changes in hematological, biochemical and non-specific immune parameters of olive flounder, *Paralichthys olivaceus*, following starvation Asian Australas J Anim Sci 27:1360–1367. https://doi.org/10. 5713/ajas.2014.14110
- KOSTAT (Statistics Korea) (2017) Preliminary results of the solution of fish culture in 2016. http://kostat.go.kr.portal.pressReleases/2/1/index.board. Accessed on February 4, 2018
- Laclette J, Guerra J, Zetina C (1980) Inhibition of tubul 1 port prization by Mebendazole. Biochem Biophys Res Commun 92:417
- Llewellyn BD (2009) Nuclear staining with alu t-hematoxylin. Biotech Histochem 84:159–177
- Martins ML, Onaka EM, Moraes FR, Fjimoto R 2001 Mebendazole treatment against *Anacanthoru enilabiatus* (Monogenea, Dactylogyridae) gill parasite of cultivate *cctus mesopotamicus* (Osteichthyes, Characidae) in Brazil. Fricaey and hematology Acta Parasitol 46:332–336
- Min EY, Kang JC (2008) En of forme benomyl on the hematological and antiox dant part sters of the Nile telapia, *Oreochromis niloticus*. Pest 5, them Phys. 792:138–143
- Moustafa EMM, Naota S Morita T, Tange N, Shimada A (2010) Pathological study of the scuticociliatosis affecting farmed Japan flounder (*Paralichthys oivaceus*) in Japan. J Vet Med Sci 72:135, 62
- Murda, L. O. Loghue PJ, Watts M, Rough K, Hawkesford T (1997) Fat encephalitis due to the scuticociliate *Uronema nigricans* in 4-ca₅ca, southern bluefin tuna *Thunnus maccoyii*. Dis Aquat 0.30:17–25
- NIFS (2016) Aquatic medicine catalog. National Institute of Fisheries Science, Aquaculture Research Department, Aquatic Disease Control Division, Busan, p 211
- Novotny MJ, Cawthorn RJ, Despres B (1996) *In vitro* effects of chemotherapeutants on the lobster parasite *Anophryoides haemophila*. Dis Aquat Org 24:233–237
- Paramá A, Iglesias R, Alvarez F, Leiro JM, Quintela JM, Peinador C, Gonzalez L, Riguera R, Sanmartin ML (2004) In vitro efficacy of

new antiprotozoals against *Philasterides dicentrachi* (Ciliophora, Scuticociliatida). Dis Aquat Org 62:97–102

- Paramá A, Piazzon MC, Lamas J, Sanmartín ML, Leiro J (2007) *In vitro* activity of the nonsteroidal anti-inflammatory drug indomethacin on a scuciticociliate parasite of farmed turbot. Vet Parasitol 148:318–324
- Park SB, Jang HB, Fagutao FF, Kim YK, Nho SW, Cha IS, Yu JE, Jung TS (2014) Combination treatment against scuticociliatosis by reducing the inhibitor effect of mucus in olive flounder, *Paralichthys olivaceus*. Fish Shellfish Immunol 38:282–286
- Quintela JM, Peinador C, González L, Iglesias R, Paramá A, Albarea F, Sanmartín ML, Riguera R (2003) Piperazine A, bb itut d naphthyridines, pyridothienopyrimidines and pyridothien biazines: new antiprotozoals active against *Philasteride dicentrrarch*. Eur J Med Chem 38:265–273
- Ramos MF, Costa AR, Barandela T, Saraiyo A, Rodonues PN (2007) Scuticociliate infection and pat lology in cultured turbot *Scophthalmus maximus* from the non-of Portugal. Dis Aquat Org 74:249–253
- Rosenthal PJ (2009) In: Katzung BG, sters SB, Trevor AB (eds) Basic and clinical pharmacolog (11th ed McGraw-Hill, USA, pp 927– 928
- Schmahl G, Benini J (1998) Trespent of fish parasites. 11. Effects of different benzi ... zole derivatives (albendazole, mebendazole, fenbendazole on *Gueea anomala*, Moniez, 1887 (Microsporidia): ultrastructural cers ... efficacy studies. Parasitol Res 84:41–49
- Seo JS, Jeon H, Jung SH, Park MA, Kim JW, Kim KH, Woo SH, Lee EH (2013) N elecular cloning and expression analysis of peptidase nes in the fish-pathogenic scuticociliate *Miamiensis avidus*.
 E IC Vet Res 9:10. https://doi.org/10.1186/1746-6148-9-10
- ici Dinçel A, Benli CK, Selvi M, Sarikaya R, Sahin D, Özkul IA, Erkoç F (2009) Sublethal cyfluthrin toxicity to carp (*Cyprinus carpio* L.) fingerlings: biochemical, hematological, histopathological alterations. Ecotoxicol Environ Saf 72:1433–1439
- Sharma B (1999) Effect of carbaryl on some biochemical constituents of the blood and liver of *Clarias batrachus*, a fresh-water teleost. J Toxicol Sci 24:157–164
- Shikiya K, Kuniyoshi T, Higashionna A, Arakaki T, Oyakawa T, Kadena K, Kinjo F, Saito A (1990) Treatment of strogyloidiasis with mebendazole and its combination with thiabendazole. Kansenshogaku Zasshi 64:1408–1415 (in Japanese)
- Shikiya K, Kuniyoshi T, Uechi H, Oyakawa T, Kinjo F, Saito A, Ikeda M, Nakamura H, Yamashiro A, Asato R (1991a) Treatment of strogyloidiasis with mebendazole—long-term eradication and new trials. Kansenshogaku Zasshi 65:433–441 (in Japanese)
- Shikiya K, Uechi H, Saito A, Asato R (1991) Clinical study of mebendazole theraphy for strongyloidiasis. Jpn J Med Hyg 19: 339–346
- Shikiya K, Kinjo F, Ikeda M, Yamashiro A, Uechi H, Oyakawa T, Kuniyoshi T, Kinjo F, Saito A, Nakamura H, Ohwan T, Yamashiro M, Asato R (1991c) Comparison of efficacy on power and tablet of mebendazole in the treatment of strogyloidiasis. Kansenshogaku Zasshi 65:681–686 (in Japanese)
- Shikiya K, Zaha O, Nimura S, Ikema M, Nakamura H, Nakayoshi T, Uechi H, Kinjo F, Saito A, Ohwan T, Yamashiro M, Asato R (1992) Long term eradication rate of mebendazole therapy for strogyloidiasis. Kansenshogaku Zasshi 66:354–359 (in Japanese)
- Song JY, Kitamura SI, Oh MJ, Kang HS, Lee JH, Tanaka SJ, Jung SH (2009) Pathogenicity of *Miamiensis avidus* (syn. *Philasterides dicentrachi*), *Pseudocohnilembus persalinus*, *Pseudocohnilembus hargisi* and *Uronema marinum* (Ciliophora, Scuticociliatida). Dis Aquat Org 83:133–143

- Taraschewski H, Renner C, Mehlhorn H (1988) Treatment of fish parasites. 3. Effects of levamisole HCl, metrifonate, febendazole, mebendazole, and ivermectin on *Anguillicola crassus* (nematodes) pathogenic in the air bladder of eels. Parasitol Res 74:281–289
- Waller PJ, Buchmann K (2001) Anthelmintic resistance and parasite control in commercial eel farms: consequences for producers. Vet Rec 148:783–784
- Werff SD, Vereecken K, Laan K, Ponce MC, Diaz RJ, Nunez FA, Rivero LR, Gorbea MB, Polman K (2014) Impact of periodic selective

mebendazole treatment on soil-transmitted helminth infections in Cuban schoolchildren. Tropical Med Int Health 19:706–718

- Yoshinaga T, Nakazoe J (1993) Isolation and in vitro cultivation of an unidentified ciliate causing Scuticociliatosis in Japanese flounder (*Paralichthys olivaceus*). Fish Pathol 28:131–134
- Zutshi B, Prasad SGR, Nagaraja R (2010) Alteration in hematology of Labeo rohita under stress of pollution from lakes of Bangalore, Karnataka, India. Environ Monit Assess 168:11–19