1S Summer exam 2004 - Calculus Dr Paul May

1. Answer *all* parts (a) to (d). All parts carry equal marks.

Determine the following:

(a) dy/dx if $y = 7x^5$ (b) dk/dp if $k = 6p^5 + 21p - 8$ (c) d β /d θ if $\beta = 9 \tan \theta$ (d) dj/dm if $j = 21e^{-12m}$ (4 marks)

2. Answer *all* parts (a) to (d). All parts carry equal marks.

Differentiate the following functions with respect to *x*, and simplify the result where possible:

(a)
$$y = (5x + 1)(7 - 3x)$$

(b) $y = 33x^5 \ln x$
(c) $y = \frac{(6x + 5)}{(6x^3 - 2)}$
(d) $y = \cos (x^5 - 3x^4)$
(8 marks)

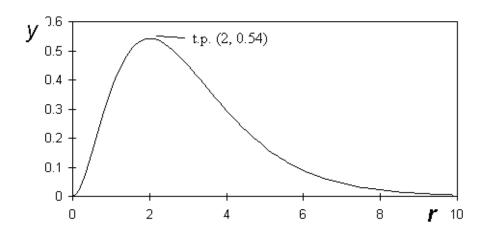
3) A function which is often used to represent the form of an electronic wavefunction in certain atoms is:

$$y = r^2 e^{-r}$$

- a) This function has 3 stationary points. One is at r = 0, and another at r = infinity. Differentiate this function and thence determine the coordinates (r, y) of the remaining stationary point. (4 marks)
- b) Differentiate this function again, determine whether the stationary point you just found is a local maximum or minimum. (5 Marks)
- c) Hence sketch this function between r = 0 and r = 8. (3 marks)

Answers

1) b) $dk/dp = 30p^4 + 21$ d) $dj/dm = -252e^{-12m}$ a) $dy/dx = 35x^4$ c) $d\beta/d\theta = +9/\cos^2\theta$ 2) (5x+1).(-3) + (7 - 3x).5 = 32 - 30xa) Product Rule: $33x^{5}(1/x) + (\ln x.165 x^{4}) = 33x^{4}(1 + 5 \ln x)$ b) Product Rule: $\frac{(6x^3-2).6-(6x+5)(18x^2)}{(6x^3-2)^2} = \frac{-72x^3-90x^2-12}{(6x^3-2)^2}$ c) Quotient Rule: d) Funct. of a Funct.: $-\sin(x^5 - 3x^4) \times (5x^4 - 12x^3) = -(5x^4 - 12x^3) \sin(x^5 - 3x^4)$ 3) a) Product Rule: $-r^2 e^{-r} + e^{-r}(2r)$ [2 mark] = $r e^{-r}(2 - r)$ For turning point, $re^{-r}(2 - r) = 0$, so either: r = 0 \therefore r = 0, $e^{-r} = 0$ \therefore r = infinity(2 - r) = 0, \therefore r = 2or The last answer is the required one.


So the turning point is at (2, 0.54).

b) This is quite tricky:

$$d^{2}y/dx^{2} = re^{-r}(-1) + (2-r) [r(-e^{-r}) + e^{-r}(1)]$$
$$= -re^{-r} - 2re^{-r} + 2e^{-r} + r^{2}e^{-r} - re^{-r}$$
$$= re^{-r} (r^{2} - 4r + 2)$$

Determine the sign of the second differential, d^2y/dr^2 . Putting in the value of r = 2, we get $d^2y/dr^2 = -0.27$, which is **-ve**, so the t.p. is a local <u>maximum</u>.

c) Sketch. Need to label axes correctly, get correct shape of graph, label t.p. correctly.

