Electrochemical Applications of CVD Diamond

 

by

 

Gustavo Pastor-Moreno

University of Bristol

School of Chemistry

Faculty of Science

 

A dissertation submitted to the University of Bristol in accordance with the requirements of the degree of
Doctor of Philosophy in the Faculty of Science

 

July 2002

 

 

CONTENTS

 

Number of words: 51100

 

 

Abstract

 

Diamond technology has claimed an important role in industry since non expensive methods of synthesis such as chemical vapour deposition allow to elaborate cheap polycrystalline diamond. This fact has increased the interest in the scientific community due to the outstanding properties of diamond. Since Pleskov published in 1987 the first paper in electrochemistry, many researchers around the world have studied different aspects of diamond electrochemistry such as reactivity, electrical structure, etc.  As part of this worldwide interest these studies reveal new information about diamond electrodes. These studies report investigation of diamond electrodes characterized using structural techniques like scanning electrode microscopy and Raman spectroscopy. A new electrochemical theory based on surface states is presented that explains the metal and the semiconductor behaviour in terms of the doping level of the diamond electrode. In an effort to characterise the properties of diamond electrodes the band edges for hydrogen and oxygen terminated surface are located in organic solvent, hence avoiding possible interference that are present in aqueous solution. The determination of the band edges is performed by Mott-Schottky studies. These allow the calculation of the flat band potential and therefore the band edges. Additional cyclic voltammetric studies are presented for both types of surface termination. Mott-Schottky data and cyclic voltammograms are compared and explained in terms of the band edge localisation. Non-degenerately p-type semiconductor behaviour is presented for hydrogen terminated boron doped diamond. Graphitic surface states on oxidised surface boron doped diamond are responsible for the electrochemistry of redox couples that posses similar energy. Using the simple redox couple 1,4-benzoquinone effect of surface termination on the chemical behaviour of diamond is presented. Hydrogen sublayers in diamond electrodes seem to play an important role for the reduction of this redox couple modifying completely the mechanism of its reduction process. Photoelectrochemical studies using 1,4-benzoquinone in aqueous solution suggest that oxygen terminated surface of diamond is under the influence of the boron elemental states originated during the growing process. Diamond used as a heat sink allows developing a couple of new techniques to perform impedance and ac voltammetry measurements. These techniques do not depend on electrical components giving the possibility of high frequency studies without disruption from the instruments. These studies are just a grain in the dessert, further studies will be required to characterise this amazing electrode material.

 

 

 

Author’s Declaration

 

This thesis is an account of work carried out between June 1999 and July 2002 at the University of Bristol under the supervision of Dr D. J. Riley.

 

I declare that the work in this dissertation was carried out in accordance with the Regulations of the University of Bristol. The work is original except where indicated by special reference in the text and no part of the dissertation has been submitted for any other degree.

 

Any views expressed in the dissertation are those of the author and in no way represent those of the University of Bristol.

 

The dissertation has not been presented to any other University for examination either in the United Kingdom or overseas.

 

Signed:                                                                     Date:      25th July 2002

 

 

 

Acknowledgements

 

 

Firstly, I would like to thank Dr Jason Riley for his help, guidance and encouragement during the whole three years.

 

I would like to thank Dr Paul May for the diamond samples grown on quartz, Dr James Smith for the free standing diamond samples, Dr James Petherbridge for his diamond samples grown by MPACVD and Dr Matt Latto for the boron doped diamond samples by HFCVD.

 

Thanks to the Interface Analysis Centre (Raman Spectroscopy and the use of their microscope equipped with a CCD camera) and Dr Sean Davies (for platinum sputtering and his help to prepare SEM pictures).

 

I would like to thank Abudinnar Hassan and Trudie Alder, undergraduates who worked with me on the project.

 

In addition to the people mentioned above, I would like to thank all the other members of the electrochemistry lab that they made my life easier at the beginning of my studies. Thanks to Liz Tull for the interesting chats whilst eating a chocolate bar during the breaks.

 

I would like to thank my colleague, Jose Vicente for his help and friendship during the three years. Also to the support and understanding during difficult moments of my dear Iris Olivares.

 

I would like to share the happiness in these moments with my brother, Francisco Javier Pastor-Moreno because after he recovered from all his severe health problems he has been source of power when I have felt down. I would like to thank Francisco Pastor, my father, because he taught me many things during my life (like how to write the number eight) that have aided this project.  Finally, I would like to thank Matilde Moreno, my mother, for all her sacrifices that made for us (my brother and I) and all the care and attentions that she gave (and still gives) me, especially in the difficult years of my childhood. Nothing is enough when it comes to her sons. Please, never change Mum! Sincerely, thanks Dad and Mum. This dream that becomes a reality is as much yours as it is mine and I do not forget that wherever I am still we are and will be a team!

 

Agradecimientos

 

En primer lugar deseo agradecer al Dr Jason Riley por su ayuda, guia y animo durante estos tres años.

 

Quiero darle las gracias tambien al Dr Paul May por las muestras de diamante depositadas en cuarzo, al Dr James Smith por las muestras de diamante sin substrato, al Dr James Petherbridge por las muestras sintetizadas usando el reactor MPACVD y al Dr Matt Latto por las muestras de diamante dopado con boro usando el reactor HFCVD.

 

Gracias al Centro Interfacial de Analisis (Espectroscopia Raman y el poder usar su microscopio equipado con una camara CCD) y al Dr Sean Davies (por depositar platino y su ayuda preparando fotografias SEM).

 

Quiero expresar mi agradecimiento tambien a Abudinnar Hassan y Trudie Alder, estudiantes sin graduar los cuales trabajaron conmigo en el proyecto.

 

Ademas de las personas mencionadas ya, deseo expresar mi gratitud a los miembros del laboratorio de electroquimica que me hicieron mas faciles las cosas en el comienzo de mis estudios. Gracias a Liz Tull por los interesantes coloquios que manteniamos durante los descansos comiendo barritas de chocolate.

 

Tambien deseo agradecer a mi colega, Jose Viciente su ayuda y amistad durante estos tres años.  Tambien agradecer el animo y el entendiemiento en los momentos dificiles de mi estimada Iris Olivares.

 

Deseo compartir la felicidad en estos momentos con mi hermano, Francisco Javier Pastor-Moreno porque despues de recupersarse de sus severos problemas de salud el ha sido para mi una fuente de energia en mis malos momentos. Quiero darle las gracias tambien a Francisco Pastor, mi padre, por haberme enseñado tantas cosas durante mi vida (como escribir correctamente el numero ocho) que me han sido de mucha ayuda en este proyecto. Tambien deseo expresar mi agradecimiento a Matilde Moreno, mi madre, por todos los sacrificios que ha hecho por nosotros (mi hermano y yo) y todo el el cuidado y atenciones que me dio (y todavia me sigue dando), especialmente por todos aquellos dificiles años de mi niñez. Todo para ella se le hace poco con sus hijos. Por favor, nunca cambies Mama! De corazon, gracias Papa y Mama. Este sueño que se hace realidad ahora es tan vuestro como mio y nunca olvido que este donde este seguimos y seguiremos siendo un equipo!

 

 

Abbreviations

AC: Alternate current

 

CB: Conduction Band

 

CE: Counter electrode

CV: Cyclic voltammetry

CVD: Chemical vapour deposition

DC: Direct current

EELS: electron energy loss spectroscopy

FRA: Frequency response analyser

FWHM: full width half maximum

HFCVD: Hot filament CVD

HPHT: High temperature high pressure

IPA: Isopropanol (2-propanol)

LEED: Low energy electron diffraction

MPACVD: Microwave plasma assisted CVD

MFC: Mass flow controllers

NHE: Normal hydrogen electrode

p.p.m: parts per million

PTFE: Polytetrafluoroethene

RE: Reference electrode

 

SBE: Schottky barrier height

s.c.c.m: standard cm3 per minute

SCE: aqueous saturated calomel electrode

SEM: Scanning electron microscopy

SIMS: Secondary ion mass spectroscopy

TBAP: Tetrabutylammoniumperchlorate

TEM: Transmission electron microscopy

Temocps: Temperature modulated open circuit potential spectroscopy

TiUL: Titanium under layer (contact)

Uv-Vis: Ultraviolet-visible (spectrum)

VB: Valence band

WE: Working elctrode

XPE: X-ray photoelectron spectroscopy

3LM: three metal layer (contact)

 

Table of units

 

 

Symbol

Meaning

Units

Magnitude

ba

Relates the changes of potential due to the temperture

V K-1

-

C

Capacitance

F, mF

-

 

heat capacity

J K-1m-3

-

 

Concentration

mol dm-3

-

C*

concentration at equilibrium stage

mol dm-3

-

c

speed light in vacuo

m s-1

2.999´108

D

diffusion coefficients

cm2 s-1

-

e

elementary charge

C

1.60´10-19

E

Energy

J

-

 

 

1 eV

1.60´10-19 J

 

applied potential

V, mV

-

F

Faraday

F

96.49´103 C

EF

Fermi level energy

eV

-

E0

Fermi level energy at surface

eV

-

Evac

vacuum level energy

eV

-

Eg

band gap energy

eV

-

h

Planck constant

J s

6.63´10-34

i

Imaginary number

-

(-1)0.5

 

Current

A, mA

-

j

current density

A cm-2

-

j0

Exchange current density

A cm-2

-

k

Boltzmann constant

J K-1

1.38´10-23

Q

Surface charge

C

-

R

gas constant

J mol-1K-1

8.31

R

Resistance

W

-

Rct

Charge transfer resistance

W

-

RW

Ohmic resistance

W

-

-

Sheet resistance

W cm

-

T

Temperature

K

-

t

Time

s

-

V

Applied potential

V

-

Z”

Imaginary component of impedance

W

-

Z’

Real component of impedance

W

-

a

Transfer coefficient

-

-

dE0

Variation of Fermi level at surface

eV

-

dV

Variation of the applied potential

V, mV

-

e

Dielectric constant

-

-

e0

Permittivity free space

C2 N-1 m-2

-

k

Thermal conducivity

W m-1 K-1

-

 

Double layer thickness parameter

cm-1

-

f

Work function

eV

-

 

 

Symbol

Meaning

Units

Magnitude

h

overpotential

V

-

c

Electron affinity

eV

-

j

Barrier height

eV

-

rD

Experimental parameter

-

-

s

Experimental parameter

W s- 0.5

-

w

frequency

 s-1, Hz

-

 

 

Different common units of pressure are used

 

1 atmosphere (atm)       = 760 Torr

= 760 millimetres of mercury (mm Hg)

= 1.013´105 pascals (Pa)

= 1.013´105 N m-2

= 1.013 bar

= 93.195 pound per square inch (psi)

 

 

Table of contents

 
Abstract

                Acknowledgements

            Author’s declaration

                Table of contents

                Abbreviations

Table of units

Table of figures

            Table of tables
 
Chapter 1: Introduction

1.1. Introduction

1.2. Properties of diamond

1.3. Synthesis of diamond

1.4. Commercial applications of diamond

1.4.1. Thermal applications

                        1.4.2. Electronic devices

                        1.4.3. Optical windows

                        1.4.4. Abrasives

            1.5. Electrochemistry of diamond

                        1.5.1. Electrochemical applications of diamond

                        1.5.2. Electrochemical studies of highly boron doped diamond in aqueous media

                        1.5.3. Electrochemical studies of highly boron doped diamond in non aqueous media

                        1.5.4. Electrochemical studies of moderately boron doped diamond in aqueous media

                        1.5.5. Electrochemical studies of undoped diamond in aqueous media

            1.6. Possible lines of investigation

            1.7. Summary

            1.8. Thesis outline

            1.9. References

 
Chapter 2: Diamond growth and characterisation

           

2.1. Background

                        2.1.1. Introduction

                        2.1.2. High-pressure high-temperature technique

                        2.1.3. Chemical vapour deposition technique

                        2.1.4. Hot filament CVD

                        2.1.5. The choice of substrates for growing CVD diamond

                        2.1.6. Nucleation

                        2.1.7. The CVD diamond film

                        2.1.8. The chemistry of CVD diamond growth

                        2.1.9. Role of atomic hydrogen in the CVD growth

                        2.1.10. In situ doping

                        2.1.11. Ex situ doping

                        2.1.12. Summary

            2.2. Diamond growth

                        2.2.1. Introduction

                        2.2.2. Gas flow system

                        2.2.3. Mass flow controllers

                        2.2.4. Dilution

                        2.2.5. Deposition chamber

                                    2.2.5.1. Top flange

                                    2.2.5.2. Front flange

                                    2.2.5.3. Bottom flange

                                    2.2.5.4. Rear flange

                                    2.2.5.5. Left flange

                                    2.2.5.6. Right flange

                        2.2.6. Substrate heater

                                    2.2.6.1. Construction of the substrate heater

                                    2.2.6.2. Operating with the substrate heater

                                    2.2.6.3. Maintenance

                        2.2.7. Filaments

                                    2.2.7.1. Construction of the filament

                                    2.2.7.2. Operating conditions

                        2.2.8. Substrates

                                    2.2.8.1. Main features of the substrates

                                    2.2.8.2. Pre-treatment of silicon surface before growing

                        2.2.9. Electrical contacts

                        2.2.10. Typical growth conditions

            2.3. Diamond characterisation

                        2.3.1. Analytical techniques to characterise CVD diamond films

                                    2.3.1.1. Scanning electron microscopy

                                    2.3.1.2. Laser raman spectroscopy

            2.4. Summary

            2.5. References

 

Chapter 3: Electrical contacts to semiconducting diamond

           

3.1. Introduction

            3.2. Indium/Gallium eutectic electrical contacts

                        3.2.1. Construction of the electrical contact

                        3.2.2. Results

                        3.2.3. Conclusions

            3.3. Silver loaded epoxy resin electrical contacts

                        3.3.1. Construction of the electrical contact

                        3.3.2. Results and discussion

                        3.3.3. Conclusions

            3.4. Gold electrical contacts

                        3.4.1. Construction of the electrical contact

                        3.4.2. Results and discussion

                        3.4.3. Conclusions

            3.5. Three layer metal electrical contacts

                        3.5.1. Construction of the electrical contact

                        3.5.2. Results and discussion

                        3.5.3. Conclusions

            3.6. Titanium under layer contacts8

                        3.6.1. Construction of the electrical contact

                        3.6.2. Results and discussion

                        3.6.3. Conclusions

            3.7. Summary11

            3.8. References

 

 

Chapter 4: Electrochemical theory for diamond electrodes

           

4.1. Introduction

            4.2. Metal electrochemistry

            4.3. Ideal p-type semiconductor electrochemistry

            4.4. Highly doped semiconductors5

                        4.4.1. Electrochemistry at boron doped diamond electrode

                                    4.4.1.1. Hydrogen surface termination on highly doped diamond

                                    4.4.1.2. Oxygen terminated surface on highly doped diamond

            4.5. Surface state mediated electron transfer

                        4.5.1. Contribution to the applied potential

                        4.5.2. Contribution of the Helmholtz layer and the space charge region

                        4.5.3. Electrical charge at the surface of semiconductor electrode

                        4.5.4. The Butler-Volmer Equation

                        4.5.5. Schottky Diode

                        4.5.6. Model

                        4.5.7. Steady state current

            4.6. Developing the model

                        4.6.1. The case when |jH,0|>>|j|

                        4.6.2. The case when |jH,0|<<  |j|

                        4.6.3. The case when |jSC,0|>>|j| and j»jH,0

                        4.6.4. Considering doping levels

            4.7. AC Impedance

            4.8. Summary

            4.9. References

 

Chapter 5: Electrochemical studies of moderately boron doped diamond in non aqueous electrolyte

               

5.1. Introduction

            5.2. Potential distribution across the semiconductor-electrolyte interface

            5.3. Experimental set-up

                        5.3.1. Electrolyte solutions

                        5.3.2. Electrochemical cells

                        5.3.3. Counter electrodes

                        5.3.4. Reference electrodes

                        5.3.5. Potentiostats

                        5.3.6. The dry box

            5.4. Mott-Schottky plots

            5.5. Cyclic voltammograms

            5.6. Conclusions

            5.7. References

 

Chapter 6: The influence of surface preparation on the electrochemistry of boron doped diamond

 

6.1. Introduction

6.2. Experimental setup

            6.2.1. Electrolyte solutions

            6.2.2. Growing characteristics of the samples

            6.2.3. Surface sample preparation

            6.2.4. Electrochemical cells

            6.2.5. Counter electrodes

            6.2.6. Reference electrodes

            6.2.7. Glassy carbon electrodes

            6.2.8. Potentiostats

            6.2.9. The dry box

6.3. Cyclic voltammograms

6.4. Conclusions

6.5. References

 

Chapter 7: Photocurrent measurements: a method to characterise surface states in CVD diamond

 

            7.1. Introduction97

            7.2. Experimental set-up7

                        7.2.1. Electrolyte solutions

                        7.2.2. Growing characteristics of the samples

                        7.2.3. Surface sample preparation

                        7.2.4. Electrochemical cells

                        7.2.5. Counter electrodes

                        7.2.6. Reference electrodes00

                        7.2.7. Faraday cages

                        7.2.8. Electronic equipment used in these experiments

            7.3. Uv-vis spectra203

            7.4. Cyclic voltammograms

            7.5. Photocurrent experiments

            7.6. Conclusions

            7.7. References

 

Chapter 8: Temperature modulated open circuit potential Spectroscopy

 

            8.1. Introduction

            8.2. Theory

                       

8.2.1. Relationship between light intensity and the electrode temperature

                        8.2.2. Relationship between the temperature and the open circuit potential

            8.3. Experimental set-up

                        8.3.1. Electrolyte solutions

                        8.3.2. Characteristics of the substrates

                        8.3.3. Growing characteristics of the sample

                        8.3.4. Electrode construction and cell assembly

                        8.3.5. Counter electrodes

                        8.3.6. Reference electrodes28

                        8.3.7. Faraday cages28

                        8.3.8. Electronic equipment used in these studies

            8.4. Cyclic voltammograms

            8.5. AC impedance experiments

            8.6. Temperature modulation open circuit potential

            8.7. Conclusions

            8.8. References

 

Chapter 9: Temperature modulated ac voltammetry

 

            9.1. Introduction3

            9.2. Theory

                        9.2.1. Relationship between the temperature and the constant applied potential

            9.3. Experimental set-up

                        9.3.1. Electrolyte solutions

                        9.3.2. Growing characteristics of the samples

                        9.3.3. Working electrode construction and cell assembly

                        9.3.4. Counter electrodes

                        9.3.5. Reference electrodes

                        9.3.6. Faraday cages

                        9.3.7. Electronic equipment used in these studies

            9.4. Cyclic voltammograms

            9.5. Temperature modulation ac voltammetry experiments

            9.6. Conclusions

            9.7. References

 

Chapter 10: Final conclusions

 

            10.1. Introduction0

            10.2. Background

            10.3. Diamond growth and characterisation

            10.4. Electrical contacts to semiconducting diamond

            10.5. Electrochemical theory for diamond electrodes

            10.6. Electrochemical studies of moderately boron doped  diamond on non aqueous electrolyte

            10.7. The influence of the surface preparation on the electrochemistry of boron doped diamond

            10.8. Photocurrent measurements: a method to characterise surface states in CVD diamond

            10.9. Temperature modulated open circuit potential spectroscopy

            10.10. Temperature modulated ac voltammetry

            10.11. Summary

            10.12. Future work

Appendices

            Appendix A: Diamond growth details

 

 

 

Table of figures

 

Chapter 1: Introduction

           

Figure 1.1. Graphite and diamond structures

 
Chapter 2: Diamond growth and characterisation

           

Figure 2.1. SEM picture of a randomly oriented HFCVD diamond (sample B13)

            Figure 2.2. SEM of a “Ballas” diamond (sample B8)

            Figure 2.3. Schematic diagram of the physical and chemical process during diamond CVD

            Figure 2.4.Triangular diagram of Bachman

            Figure 2.5. Schematic diagram of the growth mechanism

            Figure 2.6. A schematic diagram of the gas lines which fed the Diamond CVD chamber

            Figure 2.7. A picture of the diborane dilution system

            Figure 2.8. A picture of the hot filament CVD chamber

            Figure 2.9. A picture of the rear view of HFCVD chamber

            Figure 2.10. A picture of the substrate heater and the filament

            Figure 2.11. A picture of the filament and substrate heater during growing process

            Figure 2.12. SEM of a randomly oriented HFCVD diamond film (sample B141a)

            Figure 2.13. Cross section SEM picture of a thin diamond film (sample B141a)

            Figure 2.14. SEM of a continuous HFCVD diamond film (resolution 10 mm) (sample B117)

            Figure 2.15. SEM of a continuous HFCVD diamond film (resolution 5 mm) (sample B117)

            Figure 2.16. SEM of a continuous HFCVD diamond film (resolution 2 mm) (sample B117)

            Figure 2.17. SEM of a continuous HFCVD diamond film (sample B142a)

            Figure 2.18. SEM of an incomplete surface coverage of an edge of a thin diamond film (sample B142a)

            Figure 2.19. SEM of partial growth of a thin diamond film (sample B142a)

            Figure 2.20. SEM of industrial undoped MPACVD diamond (resolution 200mm)

Figure 2.21. SEM of industrial undoped MPACVD (resolution 50 mm)

            Figure 2.22. Cross section SEM picture of a free-standing undoped  MPACVD diamond

            Figure 2.23. SEM of a randomly oriented undoped sample on quartz substrate (sample Q1)

            Figure 2.24. SEM of a randomly oriented undoped sample on quartz substrate (sample Q2)

Figure 2.25. SEM of a crack undoped diamond film on quartz substrate (sample Q3)

Figure 2.26. SEM of a pinhole in a thin diamond film on quartz substrate (sample Q3)

Figure 2.27. Raman spectrum of a natural diamond

Figure 2.28. Raman spectrum of a boron doped diamond film(sample B140a)

Figure 2.29.  Raman spectrum of a boron doped diamond film (sample B140b)

Figure 2.30.  Raman spectrum of an undoped diamond film on quartz substrate (sample Q1)

 
Chapter 3: Electrical contacts to semiconducting diamond

           

Figure 3.1. i-V plot for two silver contacts on as grown moderately boron doped diamond

            Figure 3.2. i-V plot for two silver contacts on as grown low boron doped diamond

            Figure 3.3. Metal/semiconductor interface

            Figure 3.4. i-V plot for two gold contacts on as grown and oxidised diamond films (samples B123a and b)

            Figure 3.5. i-V plot for two gold contacts on as grown and oxidised diamond films (samples B128a and b)

            Figure 3.6. Schematic diagram of the metal evaporator

            Figure 3.7. Schematic diagram of the three layer metal top top contact

            Figure 3.8. i-V plot for two 3LM contacts on a post-annealed diamond film (sample B129a)

Figure 3.9. i-V plot for one 3LM contact and one gold contact on a post-annealed diamond film (sample B129a)

Figure 3.10. Four point probe i-V plot for two 3LM contact on a post-annealed diamond film (sample B129a)

Figure 3.11. Two point probe i-V plot for two 3LM contact on a post-annealed diamond film (sample B129a)

Figure 3.12. Plane schematic view of TiUL contact

Figure 3.13. Perspective schematic view of TiUL contact

Figure 3.14. Plane schematic view of double strip under layer contact

Figure 3.15. Perspective schematic view of double strip under layer contact

Figure 3.16. Optical microscopy image of the central section taken with a 50 ´ objective lens (sample B147a)

Figure 3.17. SEM picture of the central section (sample B147a)

Figure 3.18. SEM picture of an inclusion on the central section of the diamond surface (sample B147a)

Figure 3.19. Optical microscopy image of the boundary between areas a and b taken with a 20 ´ objective lens (sample B147a)

Figure 3.20. Optical microscopy image of the boundary between areas a and b taken with a 10 ´ objective lens (sample B147a)

            Figure 3.21. SEM image of the boundary between areas a and b (resolution 200 mm) (sample B147a)

Figure 3.22. SEM image of the boundary between areas a and b (resolution 10 mm) (sample B147a)

Figure 3.23. Optical microscopy image of the boundary between areas b and c taken with a 10 ´ objective lens (sample B147a)

Figure 3.24. Optical microscopy image of the boundary between areas b and c taken with a 20 ´ objective lens (sample B147a)

Figure 3.25. Optical microscopy image of the boundary between areas b and c taken with a 20 ´ objective lens (sample B147a)

Figure 3.26. i-V plot for two TiUL contact on as grown diamond film (sample B147a)

Figure 3.27. i-V plot for one TiUL contact and one gold contact on as oxidised diamond film (sample B147a)

 
Chapter 4: Electrochemical theory for diamond electrodes

           

Figure 4.1. Schematic distribution functions on the rate of electron transfer for a metal-solution interface

            Figure 4.2. Current density vs overpotential for a=0.5

            Figure 4.3. Current density vs overpotential for a semiconductor

            Figure 4.4. Schematic distribution functions on the rate of electron transfer for a semiconductor-solution interface

            Figure 4.5. Schematic distribution functions on the rate of electron transfer for a heavily doped semiconductor-solution interface

Figure 4.6. Current density vs overpotential for a heavily doped semiconductor

            Figure 4.7. Schematic energy level diagram for diamond

            Figure 4.8. Reaction at a hydrogen terminated surface

            Figure 4.9. Contact process for an oxygen terminated diamond surface

            Figure 4.10. Electron transfer via surface states

            Figure 4.11. Forward bias and conventional electrochemical current for an n-type and/or p-type semiconductor

            Figure 4.12. Schematic energetic diagram at positive potential

            Figure 4.13. Equivalent circuit for surface mediated transfer with significant potential drop across the Helmholtz layer

            Figure 4.14. Equation 4.51 plotted for |jH,0|>>|j|

            Figure 4.15. Equation 4.51 plotted for |jH,0|<<|j|

            Figure 4.16. Equation 4.51 plotted for |jSC,0|>>|j|

            Figure 4.17. Equation 4.51 plotted for |jSC,0|>>|j| and b=1´1021

            Figure 4.18. Equation 4.51 plotted for |jSC,0|>>|j| and b=1´1024

            Figure 4.19. Impedance plot for open circuit potentials conditions

 

Chapter 5: Electrochemical studies of moderately boron doped diamond in non aqueous electrolyte

           

Figure 5.1. Energy diagram of the semiconductor-electrolyte interface under equilibrium

            Figure 5.2. Energy diagram of an ideally polarisable interface at zero potential

            Figure 5.3. Schematic representation of the potential drop and charge across the semiconductor electrolyte interface under depletion conditions

            Figure 5.4. Potential dependence of the band bending for a p-type semiconductor

            Figure 5.5. A schematic diagram of an electrochemistry cell

            Figure 5.6. Schematic diagram of a counter and platinum wire electrode

            Figure 5.7. A schematic diagram of a ferrocene reference electrode

            Figure 5.8. A picture of the dry box

            Figure 5.9. Mott-Schottky plots for semiconducting hydrogen terminated boron doped diamond electrode

            Figure 5.10. Mott-Schottky plots for semiconducting oxygen terminated boron doped diamond electrode

            Figure 5.11. Proposed energy diagram for the diamond-electrolyte interface for hydrogen and oxygen terminated samples

            Figure 5.12. Cyclic voltammetry recorded at scan rate of 0.1 Vs-1, of platinum working electrode in 1´10-3 mol dm-3 FeCp2

            Figure 5.13. Cyclic voltammetry recorded at scan rate of 0.1 Vs-1, of platinum working electrode in 1´10-3 mol dm-3 FeCp2*

            Figure 5.14. Cyclic voltammetry recorded at scan rate of 0.1 Vs-1, of  boron doped diamond electrode. A hydrogen terminated sample immersed in 1´10-3 mol dm –3 FeCp2

            Figure 5.15. Cyclic voltammetry recorded at scan rate of 0.1 Vs-1, of boron doped diamond electrode. A hydrogen terminated sample immersed in 1´10-3 mol dm-3 FeCp2* 

            Figure 5.16. Cyclic voltammetry recorded at scan rate of 0.1 Vs-1, of boron doped diamond electrode. An oxygen terminated sample immersed in 1´10-3  mol dm-3 FeCp2

            Figure 5.17. Cyclic voltammetry recorded at scan rate of 0.1 Vs-1, of boron doped diamond electrode. An oxygen terminated sample immersed in 1´10-3 mol dm-3 FeCp2*

 
Chapter 6: The influence of surface preparation on the electrochemistry of boron doped diamond

           

Figure 6.1. Schematic diagram of glassy carbon electrode

            Figure 6.2. Cyclic voltammetry recorded at scan rate of 0.1 Vs-1, of glassy carbon electrode immersed in 1´10-3 mol dm-3 1,4-benzoquinone

Figure 6.3. Cyclic voltammetry recorded at scan rate of 0.1 Vs-1, of oxygen terminated, highly doped diamond electrode immersed in 1´10-3 mol dm-3 1,4-benzoquinone

            Figure 6.4. Cyclic voltammetry recorded at scan rate of 0.1 Vs-1, of as grown condition, highly doped diamond electrode immersed in 1´10-3 mol dm-3 1,4-benzoquinone

             Figure 6.5. Cyclic voltammetry recorded at scan rate of 0.1 Vs-1, of as re-hydrogenated surface, highly doped diamond electrode immersed in 1´10-3 mol dm-3 1,4-benzoquinone

 
Chapter 7: Photocurrent measurements: a method to characterise surface states in CVD diamond
 
Figure 7.1. Detailed diagram of the glass cell used.
Figure 7.2. Schematic diagram of the electrochemical cell in experimental conditions
Figure 7.3. A schematic diagram of Ag| AgCl reference electrode
Figure 7.4. Uv-vis spectra of 1´10-3 mol dm-3 1,4-benzoquinone and potassium ferrocyanide

Figure 7.5. Cyclic voltammetry recorded at scan rate of 0.1 Vs-1, of oxidised surface, highly doped diamond electrode immersed in 1´10-3 mol dm-3 potassium ferrocyanide

Figure 7.6. Cyclic voltammetry recorded at scan rate of 0.1 Vs-1, f oxidised surface, highly doped diamond electrode immersed in 1´10-3 mol dm-3 1,4-benzoquinone in aqueous media

Figure 7.7. Photocurrent spectra recorded at highly doped diamond electrode (oxidised surface) immersed in 1´10-3 mol dm-3 1,4-benzoquinone in aqueous solution at applied potentials +0.6 and +0.9 V vs AgCl reference

            Figure 7.8. Proposed energy diagram for diamond-electrolyte Interface

 
Chapter 8: Temperature modulated open circuit potential spectroscopy

 

Figure 8.1. Schematic diagram of system diamond-gold electrolyte

Figure 8.2. Equivalent circuit diagram

Figure 8.3. Schematic diagram of the different stages in the construction of the electrical contact and cell assembly

            Figure 8.4. Detailed diagram of the glass cell used in these studies

            Figure 8.5. Experimental temocps display

Figure 8.6.  A cyclic voltammetry recorded at gold (diamond substrate) electrode immersed in 1´10-3 mol dm-3 ferro-ferricyanide aqueous solution. Scan rate 0.1 Vs-1

Figure 8.7. A cyclic voltammetry recorded at gold (diamond substrate) electrode immersed in 0.1´10-3 mol dm-3 ferro-ferricsulfate aqueous solution. Scan rate 0.1 Vs-1

Figure 8.8. A cyclic voltammetry recorded at gold (diamond substrate) electrode immersed in 1´10-3 mol dm-3 ferro-ferricsulfate aqueous solution. Scan rate 0.1 Vs-1

Figure 8.9. AC impedance of 1´10-3 mol dm-3 ferro-ferricyanide Ac modulation: 10 mV

Figure 8.10. Phase component vs frequency for 1´10-3 mol dm-3 ferro-ferricyanide

Figure 8.11. Magnitude component vs frequency for 1´10-3 mol dm-3 ferro-ferricyanide

Figure 8.12. AC impedance of 0.1´10-3 mol dm-3 ferro-ferricyanide Ac modulation: 10 mV

Figure 8.13. Phase component vs frequency for 0.1´10-3 mol dm-3 ferro-ferricyanide

Figure 8.14. Magnitude component vs frequency for 0.1´10-3 mol dm-3 ferro-ferricyanide

Figure 8.15. AC impedance of 0.1´10-3 mol dm-3 ferro-ferricsulfate Ac modulation: 10 mV

Figure 8.16. Phase component vs frequency for 0.1´10-3 mol dm-3 ferro-ferricsulfate

Figure 8.17. Magnitude component vs frequency for 0.1´10-3 mol dm-3 ferro-ferricsulfate

Figure 8.18. Imaginary vs real component of temocps for 0.1´10-3 mol dm-3 ferro-ferricsulfate

Figure 8.19. Phase component vs frequency of temocps for 0.1´10-3 mol dm-3 ferro-ferricsulfate

Figure 8.20. Magnitude component vs frequency of temocps for 0.1´10-3 mol dm-3 ferro-ferricsulfate

            Figure 8.21. Diagram of the experimental set up

Figure 8.22. Imaginary vs real component of temocps for 0.1´10-3 mol dm-3 ferro-ferricsulfate. Theoretical and experimental data are shown.

Figure 8.23. Phase component vs frequency of temocps for 0.1´10-3 mol dm-3 ferro-ferricsulfate. Theoretical and experimental data are shown.

Figure 8.24. Magnitude vs frequency of temocps for 0.1´10-3 mol dm-3 ferro-ferricsulfate. Theoretical and experimental data are shown.

 
Chapter 9: Temperature modulated ac voltammetry

           

Figure 9.1. Equivalent model circuit

            Figure 9.2. Experimental configuration to perform ac voltammetry

Figure 9.3. A cyclic voltammetry recorded at gold (diamond substrate) electrode immersed in 1´10-3 mol dm-3 ferro-ferricsulfate aqueous solution. Scan rate 0.1 Vs-1

Figure 9.4. Oxidation peaks vs concentration of ferro-ferricsulfate

 

Figure 9.5. Temperature modulated ac voltammetry recorded at gold (diamond substrate) electrode immersed in  1´10-3 mol dm-3 ferro-ferricsulfate aqueous solution

Figure 9.6. Temperature modulated ac voltammetry recorded at gold (diamond substrate) electrode immersed in 2´10-3 mol dm-3 ferro-ferricsulfate aqueous solution

Figure 9.7. Temperature modulated ac voltammetry recorded at gold (diamond substrate) electrode immersed in 4´10-3 mol dm-3 ferro-ferricsulfate aqueous solution

Figure 9.8. Temperature modulated ac voltammetry recorded at gold (diamond substrate) electrode immersed in 6´10-3 mol dm-3 ferro-ferricsulfate aqueous solution

Figure 9.9. Temperature modulated ac voltammetry recorded at gold (diamond substrate) electrode immersed in 8´10-3 mol dm-3 ferro-ferricsulfate aqueous solution

Figure 9.10. Diagram of the experimental set up that details the ac and dc components in the system

Figure 9.11. Temperature modulated ac voltammetry recorded at gold (diamond substrate) electrode immersed in 4´10-3 mol dm-3 ferro-ferricsulfate aqueous solution Theoretical and experimental data are shown

 

 

Table of tables
 
Chapter 1: Introduction

 

            Table 1.1. Some of the properties of diamond

 

Chapter 2: Diamond growth and characterisation

 

            Table 2.1. Specifications of the mass flow controllers

            Table 2.2. Trace elements in the tantalum wire

            Table 2.3. Typical deposition conditions for HFCVD reactor

 
Chapter 3: Electrical contacts to semiconducting diamond

 

            Table 3.1. Summary of the production process for 3LM contact

            Table 3.2. Resistance measurements for 3LM

            Table 3.3. Summary of the production process for TiUL contact

 

Appendices

 

            Table A.1. Details of the diamond growth runs